scholarly journals Striking stationarity of large-scale climate model bias patterns under strong climate change

2018 ◽  
Vol 115 (38) ◽  
pp. 9462-9466 ◽  
Author(s):  
Gerhard Krinner ◽  
Mark G. Flanner

Because all climate models exhibit biases, their use for assessing future climate change requires implicitly assuming or explicitly postulating that the biases are stationary or vary predictably. This hypothesis, however, has not been, and cannot be, tested directly. This work shows that under very large climate change the bias patterns of key climate variables exhibit a striking degree of stationarity. Using only correlation with a model’s preindustrial bias pattern, a model’s 4xCO2bias pattern is objectively and correctly identified among a large model ensemble in almost all cases. This outcome would be exceedingly improbable if bias patterns were independent of climate state. A similar result is also found for bias patterns in two historical periods. This provides compelling and heretofore missing justification for using such models to quantify climate perturbation patterns and for selecting well-performing models for regional downscaling. Furthermore, it opens the way to extending bias corrections to perturbed states, substantially broadening the range of justified applications of climate models.

2016 ◽  
Vol 11 (1s) ◽  
Author(s):  
Joseph Leedale ◽  
Adrian M. Tompkins ◽  
Cyril Caminade ◽  
Anne E. Jones ◽  
Grigory Nikulin ◽  
...  

The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.


2020 ◽  
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


2020 ◽  
Vol 47 (3) ◽  
pp. 326-336
Author(s):  
Mohammad Madani ◽  
Vinod Chilkoti ◽  
Tirupati Bolisetti ◽  
Rajesh Seth

In most of the climate change impact assessment studies, climate model bias is considered to be stationary between the control and scenario periods. Few methods are found in the literature that addresses the issue of nonstationarity in correcting the bias. To overcome the shortcomings reported in these approaches, three new methods of bias correction (NBC_μ, NBC_σ, and NBC_bs) are presented. The methods are improvised versions of previous techniques relying on distribution mapping. The methods are tested using split sample approach over 50-year historical period for nine climate stations in Ontario, using six regional climate models. The average bias reduction improvement by new methods, in mean daily and monthly precipitation, was found to be 73.9%, 74.3%, and 77.4%, respectively, higher than that obtained by the previous methods (eQM 67.7% and CNCDFm_NP 64.1%). Thus, the methods are found to be more effective in accounting for nonstationarity in the model bias.


2011 ◽  
Vol 24 (3) ◽  
pp. 867-880 ◽  
Author(s):  
Jouni Räisänen ◽  
Jussi S. Ylhäisi

Abstract The general decrease in the quality of climate model output with decreasing scale suggests a need for spatial smoothing to suppress the most unreliable small-scale features. However, even if correctly simulated, a large-scale average retained by the smoothing may not be representative of the local conditions, which are of primary interest in many impact studies. Here, the authors study this trade-off using simulations of temperature and precipitation by 24 climate models within the Third Coupled Model Intercomparison Project, to find the scale of smoothing at which the mean-square difference between smoothed model output and gridbox-scale reality is minimized. This is done for present-day time mean climate, recent temperature trends, and projections of future climate change, using cross validation between the models for the latter. The optimal scale depends strongly on the number of models used, being much smaller for multimodel means than for individual model simulations. It also depends on the variable considered and, in the case of climate change projections, the time horizon. For multimodel-mean climate change projections for the late twenty-first century, only very slight smoothing appears to be beneficial, and the resulting potential improvement is negligible for practical purposes. The use of smoothing as a means to improve the sampling for probabilistic climate change projections is also briefly explored.


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2021 ◽  
Author(s):  
Charles Williams ◽  
Daniel Lunt ◽  
Alistair Sellar ◽  
William Roberts ◽  
Robin Smith ◽  
...  

<p>To better understand the processes contributing to future climate change, palaeoclimate model simulations are an important tool because they allow testing of the models’ ability to simulate very different climates than that of today.  As part of CMIP6/PMIP4, the latest version of the UK’s physical climate model, HadGEM3-GC31-LL (hereafter, for brevity, HadGEM3), was recently used to simulate the mid-Holocene (~6 ka) and Last Interglacial (~127 ka) simulations and the results were compared to the preindustrial era, previous versions of the same model and proxy data (see Williams et al. 2020, Climate of the Past).  Here, we use the same model to go further back in time, presenting the results from the mid-Pliocene Warm Period (~3.3 to 3 ma, hereafter the “Pliocene” for brevity).  This period is of particular interest when it comes to projections of future climate change under various scenarios of CO<sub>2</sub> emissions, because it is the most recent time in Earth’s history when CO<sub>2</sub> levels were roughly equivalent to today.  In response, albeit due to slower mechanisms than today’s anthropogenic fossil fuel driven-change, during the Pliocene global mean temperatures were 2-3°C higher than today, more so at the poles.</p><p> </p><p>Here, we present results from the HadGEM3 Pliocene simulation.  The model is responding to the Pliocene boundary conditions in a manner consistent with current understanding and existing literature.  When compared to the preindustrial era, global mean temperatures are currently ~5°C higher, with the majority of warming coming from high latitudes due to polar amplification from a lack of sea ice.  Relative to other models within the Pliocene Modelling Intercomparison Project (PlioMIP), this is the 2<sup>nd</sup> warmest model, with the majority of others only showing up to a 4.5°C increase and many a lot less.  This is consistent with the relatively high sensitivity of HadGEM3, relative to other CMIP6-class models.  When compared to a previous generation of the same UK model, HadCM3, similar patterns of both surface temperature and precipitation changes are shown (relative to preindustrial).  Moreover, when the simulations are compared to proxy data, the results suggest that the HadGEM3 Pliocene simulation is closer to the reconstructions than its predecessor.</p>


2014 ◽  
Vol 18 (9) ◽  
pp. 3367-3392 ◽  
Author(s):  
S. G. Leibowitz ◽  
R. L. Comeleo ◽  
P. J. Wigington Jr. ◽  
C. P. Weaver ◽  
P. E. Morefield ◽  
...  

Abstract. Classification can allow for evaluations of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to evaluate vulnerability to potential future climate change at statewide and basin scales in the state of Oregon. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971–2000 HL climate indices are recalculated using 2041–2070 simulation results from the ECHAM (European Centre HAMburg) and PCM (Parallel Climate Model) climate models with the A2, A1b, and B1 emission scenarios. Changes in climate class were modest (4–18%) statewide. However, there were major changes in seasonality class for five of the six realizations (excluding PCM_B1): Oregon shifts from being 13% snow-dominated to 4–6% snow-dominated under these five realizations, representing a 56–68% reduction in snowmelt-dominated area. At the basin scale, simulated changes for the Siletz Basin, in Oregon's Coast Range, include a small switch from very wet to wet climate, with no change in seasonality. However, there is a modest increase in fall and winter water due to increased precipitation. For the Sandy Basin, on the western slope of the Cascades, HL climate class does not change, but there are major changes in seasonality, especially for areas with low aquifer permeability, which experiences a 100% loss of spring seasonality. This would reduce summer baseflow, but effects could potentially be mitigated by streamflow buffering effects provided by groundwater in the high aquifer permeability portions of the upper Sandy. The Middle Fork John Day Basin (MFJD), in northeastern Oregon, is snowmelt-dominated. The basin experiences a net loss of wet and moist climate area, along with an increase in dry climate area. The MFJD also experiences major shifts from spring to winter seasonality, representing a 20–60% reduction in snowmelt-dominated area. Altered seasonality and/or magnitude of seasonal streamflows could potentially affect survival, growth and reproduction of salmonids in these watersheds, with the greatest effects projected for the MFJD. A major strength of the HL approach is that results can be applied to similarly classified, ungaged basins. Information resulting from such evaluations can help inform management responses to climate change at regional and basin scales without requiring detailed modeling efforts.


2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


Sign in / Sign up

Export Citation Format

Share Document