scholarly journals Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase

2018 ◽  
Vol 115 (42) ◽  
pp. E9971-E9980 ◽  
Author(s):  
Po-Kai Hsu ◽  
Yohei Takahashi ◽  
Shintaro Munemasa ◽  
Ebe Merilo ◽  
Kristiina Laanemets ◽  
...  

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2. These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].

2014 ◽  
Vol 112 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Pengcheng Wang ◽  
Yanyan Du ◽  
Yueh-Ju Hou ◽  
Yang Zhao ◽  
Chuan-Chih Hsu ◽  
...  

The phytohormone abscisic acid (ABA) plays important roles in plant development and adaptation to environmental stress. ABA induces the production of nitric oxide (NO) in guard cells, but how NO regulates ABA signaling is not understood. Here, we show that NO negatively regulates ABA signaling in guard cells by inhibiting open stomata 1 (OST1)/sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6) through S-nitrosylation. We found that SnRK2.6 is S-nitrosylated at cysteine 137, a residue adjacent to the kinase catalytic site. Dysfunction in the S-nitrosoglutathione (GSNO) reductase (GSNOR) gene in the gsnor1-3 mutant causes NO overaccumulation in guard cells, constitutive S-nitrosylation of SnRK2.6, and impairment of ABA-induced stomatal closure. Introduction of the Cys137 to Ser mutated SnRK2.6 into the gsnor1-3/ost1-3 double-mutant partially suppressed the effect of gsnor1-3 on ABA-induced stomatal closure. A cysteine residue corresponding to Cys137 of SnRK2.6 is present in several yeast and human protein kinases and can be S-nitrosylated, suggesting that the S-nitrosylation may be an evolutionarily conserved mechanism for protein kinase regulation.


2020 ◽  
Vol 21 (24) ◽  
pp. 9517
Author(s):  
Choonkyun Jung ◽  
Nguyen Hoai Nguyen ◽  
Jong-Joo Cheong

The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.


2021 ◽  
Vol 118 (30) ◽  
pp. e2100073118
Author(s):  
Yoshiaki Kamiyama ◽  
Misaki Hirotani ◽  
Shinnosuke Ishikawa ◽  
Fuko Minegishi ◽  
Sotaro Katagiri ◽  
...  

The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.


Author(s):  
Yoshiaki Kamiyama ◽  
Misaki Hirotani ◽  
Shinnosuke Ishikawa ◽  
Fuko Minegishi ◽  
Sotaro Katagiri ◽  
...  

ABSTRUCTA phytohormone abscisic acid (ABA) has a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) mediates ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as an interacting protein with SnRK2. A series of reverse genetic and biochemical analyses revealed that Raf36 negatively regulates ABA responses and is directly phosphorylated by SnRK2s. In addition, we found that Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. Comparative phosphoproteomic analysis using Arabidopsis wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results reveal a novel subsection of ABA-responsive phosphosignaling pathways branching from SnRK2.


2012 ◽  
Author(s):  
David Granot ◽  
Sarah M. Assmann

Water is the major limiting factor in agriculture and stomata, composed of two guard cells and the pore they circumscribe, are the chief gates controlling plants’ water loss. The prevailing century old paradigm was that sugars act as an osmoticum in guard cells, contributing to the opening of the stomata. In contrast, we discovered that sugars close stomata and the closure is mediated by the sugar-sensing enzyme hexokinase (HXK) that triggers the abscisic acid (ABA)-signaling pathway within the guard cells. This new discovery suggests a sugar-sensing mechanism within guard cells that controls stomatal closure, and supports the existence of a stomatal feedback mechanism that coordinates photosynthesis with transpiration.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Benjamin Brandt ◽  
Shintaro Munemasa ◽  
Cun Wang ◽  
Desiree Nguyen ◽  
Taiming Yong ◽  
...  

A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level.


2005 ◽  
Vol 60 (9-10) ◽  
pp. 769-773 ◽  
Author(s):  
Takuya Furuichi ◽  
Izumi C. Mori ◽  
Shoshi Muto

Abstract Protein kinases are involved in signal transduction for environmental stress responses. In response to drought and salinity, a 48-kDa protein kinase (AAPK; abscisic acid-activated protein kinase (AAPK) in guard cells is activated by abscisic acid (ABA) and phosphorylates several targets such as the carboxy-terminus of inward-rectifying K+ channel and heterogeneous mRNA binding protein to adopt to the changing environment. The AAPK expressed specifically in guard cells, and recombinant AAPK was phosphorylated only with the extract from ABA-treated guard cells but not from untreated cells. This indicates the presence of an AAPK kinase (AAPKK), which is activated by ABA and phosphorylates AAPK preceding the activation of AAPK. Both AAPK and AAPKK are involved in the protein kinase cascade for the rapid ABA-signaling.


2021 ◽  
Author(s):  
Sohail M. Karimi ◽  
Matthias Freund ◽  
Brittney M. Wager ◽  
Michael Knoblauch ◽  
Jörg Fromm ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 885
Author(s):  
Takafumi Shimizu ◽  
Yuri Kanno ◽  
Hiromi Suzuki ◽  
Shunsuke Watanabe ◽  
Mitsunori Seo

The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.


Sign in / Sign up

Export Citation Format

Share Document