scholarly journals High-throughput quantitative microscopy-based half-life measurements of intravenously injected agents

2020 ◽  
Vol 117 (7) ◽  
pp. 3502-3508
Author(s):  
Laura G. Bracaglia ◽  
Alexandra S. Piotrowski-Daspit ◽  
Chun-Yu Lin ◽  
Zoe M. Moscato ◽  
Yongheng Wang ◽  
...  

Accurate analysis of blood concentration and circulation half-life is an important consideration for any intravenously administered agent in preclinical development or for therapeutic application. However, the currently available tools to measure these parameters are laborious, expensive, and inefficient for handling multiple samples from complex multivariable experiments. Here we describe a robust high-throughput quantitative microscopy-based method to measure the blood concentration and circulation half-life of any fluorescently labeled agent using only a small (2 µL) amount of blood volume, enabling additional end-point measurements to be assessed in the same subject. To validate this method, we demonstrate its use to measure the circulation half-life in mice of two types of fluorescently labeled polymeric nanoparticles of different sizes and surface chemistries and of a much smaller fluorescently labeled monoclonal antibody. Furthermore, we demonstrate the improved accuracy of this method compared to previously described methods.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5589
Author(s):  
João Serôdio ◽  
William Schmidt ◽  
Jörg C. Frommlet ◽  
Gregor Christa ◽  
Matthew R. Nitschke

The responses of photosynthetic organisms to light stress are of interest for both fundamental and applied research. Functional traits related to the photoinhibition, the light-induced loss of photosynthetic efficiency, are particularly interesting as this process is a key limiting factor of photosynthetic productivity in algae and plants. The quantitative characterization of light responses is often time-consuming and calls for cost-effective high throughput approaches that enable the fast screening of multiple samples. Here we present a novel illumination system based on the concept of ‘multi-actinic imaging’ of in vivo chlorophyll fluorescence. The system is based on the combination of an array of individually addressable low power RGBW LEDs and custom-designed well plates, allowing for the independent illumination of 64 samples through the digital manipulation of both exposure duration and light intensity. The illumination system is inexpensive and easily fabricated, based on open source electronics, off-the-shelf components, and 3D-printed parts, and is optimized for imaging of chlorophyll fluorescence. The high-throughput potential of the system is illustrated by assessing the functional diversity in light responses of marine macroalgal species, through the fast and simultaneous determination of kinetic parameters characterizing the response to light stress of multiple samples. Although the presented illumination system was primarily designed for the measurement of phenotypic traits related to photosynthetic activity and photoinhibition, it can be potentially used for a number of alternative applications, including the measurement of chloroplast phototaxis and action spectra, or as the basis for microphotobioreactors.


2018 ◽  
Vol 23 (7) ◽  
pp. 697-707 ◽  
Author(s):  
John Joslin ◽  
James Gilligan ◽  
Paul Anderson ◽  
Catherine Garcia ◽  
Orzala Sharif ◽  
...  

The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.


2017 ◽  
Vol 34 (4) ◽  
pp. 684-687 ◽  
Author(s):  
Jiangning Song ◽  
Fuyi Li ◽  
André Leier ◽  
Tatiana T Marquez-Lago ◽  
Tatsuya Akutsu ◽  
...  

2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Rajeev Ranjan ◽  
Ashish Srivastava ◽  
Reena Bharti ◽  
Trisha Roy ◽  
Sonia Verma ◽  
...  

ABSTRACT We compared the pharmacokinetics and efficacy of a combination of d-cycloserine (DCS) and ethionamide (ETO) via oral and inhalation routes in mice. The plasma half-life (t1/2) of oral ETO at a human-equivalent dose decreased from 4.63 ± 0.61 h to 1.64 ± 0.40 h when DCS was coadministered. The area under the concentration-time curve from 0 h to time t (AUC0–t) was reduced to one-third. Inhalation overcame the interaction. Inhalation, but not oral doses, reduced the lung CFU/g of Mycobacterium tuberculosis H37Rv from 6 to 3 log10 in 4 weeks, indicating bactericidal activity.


2001 ◽  
Vol 71 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Allen D. Smith ◽  
Virginia C. Morris ◽  
Orville A. Levander

Gluthatione peroxidase and thioredoxin reductase are selenocysteine-containing enzymes that are constituents of the cellular antioxidant defense system. Conventional cuvette-based assays for glutathione peroxidase and thioredoxin reductase enzymes are laborious and time consuming. The ability to assay their activities rapidly in multiple samples would aid efforts focused on understanding the impact of these enzymes on the cellular antioxidant defense system. High throughput can be achieved with assays adapted to work in a clinical analyzer but require expensive equipment. Assays designed to work in a 96-well microplate reader provide an alternative methodology for high throughput with reduced instrumentation cost. However, due to differences in the light pathlength when using a 96-well format, the values obtained cannot be compared directly with those obtained using a 1-cm cuvette. Described here are assays for glutathione peroxidase and thioredoxin reductase modified to work in a 96-well format that incorporates light pathlength determinations into the assays. The values obtained using a high throughput 96-well format in conjunction with pathlength determinations are in agreement with those obtained using a standard 1-cm cuvette. While spectrophotometrically derived pathlengths are the most accurate, calculated pathlengths based on assay volume and well size can be used with only a small amount of error introduced. This method can also be applied to many other enzyme assays, thus allowing the rapid analysis of large numbers of samples without the need for expensive equipment.


2016 ◽  
Vol 32 (10) ◽  
pp. 1486-1492 ◽  
Author(s):  
Gabriel H. Murillo ◽  
Na You ◽  
Xiaoquan Su ◽  
Wei Cui ◽  
Muredach P. Reilly ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3479-3479 ◽  
Author(s):  
Naoki Takezako ◽  
Masatomo Miura ◽  
Akihisa Nagata ◽  
Naohiro Sekiguchi ◽  
Takenori Niioka ◽  
...  

Abstract Background: Multiple myeloma is still lethal disease. However, the prognosis of this disease has been improving according to the administration of novel agents. Among of these novel agents, lenalidomide is confirmed the validity of consolidation-maintenance setting by a randomized controlled study. The combination of clarithromycin, lenalidomide and dexamethasone (BiRd) has led to highly durable responses in newly diagnosed myeloma (Rossi A et al 2013). However, mechanism of clarithromycin against myeloma cells is not still clear. It is believed that clarithromycin increases the area under the curve and maximum concentration levels of corticosteroids. On the other hand, clarithromycin has an ability to interact with human MDR1 (ATP-binding Cassette Sub-family B Member 1 (ABCB1), P- glycoprotein). Furthermore, lenalidomide is a substrate of MDR1, a membrane efflux transporter ubiquitously expressed in human tissues, such as the small intestine, whose activity could decrease the bioavailability of lenalidomide. Therefore, we examined whether blood concentration of lenalidomide would change with the existence of clarithromycin. Aim: To investigate whether blood concentration of lenalidomide would change with the existence of clarithromycin. Method: Lenalidomide 15 mg (Revlimid; Celgene Corporation, Tokyo, Japan) was orally administered once daily at 08:00 hours according to the recommendations (day1-21) of a 28-day cycle. Dexamethasone (20mg) was administrated on day 1,8,15, and 22. Orally, from day 8 to 21, Clarithromycin 400mg was administrated twice daily. On day 7and 14 of Bird therapy, whole-blood samples were collected just before oral lenalidomide administration, and at 1, 2, 4, and 6 hours thereafter. Pharmacokinetic analysis of lenalidomide was carried out using the standard non-compartmental method using WinNonlin (version 5.2; Pharsight Co, Mountain View, CA). The elimination half-life was calculated from the log-linear regression of the terminal phase of the concentration–time curve using at least 3 sampling points (elimination half-life = ln2/ke; ke = elimination rate constant). The total AUC was calculated using the linear trapezoidal rule. Results: Twenty five patients, who were obtained written informed consent, were enrolled in this study from April 2012 to June 2014. Mean plasma lenalidomide concentrations are shown in Figure 1. According to administration of clarithromycin, plasma concentrations of lenalidomide elevated at 2, 3, and 4 hour, respectably (p=0.045, p=0.039, p=0.042). Furthermore, baseline plasma concentration of lenalidomide was not affected by administration of clarithromycin (p=0.132). On the other hand, AUC24 were not affected by addition of clarithromycin (p=0.213) (Figure 2). In some patients, blood concentration of lenalidomide extremely increased administration of clarithromycin. These patients had wild type of ABCB1, C3435T genotype (C/C) (p=0.036). The other patients who were moderate affected to clarithromycin administration were mutated types (C/T or T/T). Nineteen patients obtained at least VGPR (sCR (9), VGPR (10)). The major adverse event (AE) was skin rush; however, it was manageable, except one patient (Grade 3). Hematological AEs were well tolerable (i.e. Grade 1 or 2, thrombocytopenia). No patient died during BiRd therapy. Discussion: In MM-001 trial, lenalidomide led anti-MM response according to dose dependent manner (Richardson P, et al. 2002). In addition, hematological AEs, especially thrombocytopenia were significant related to AUC24 (p<0.001). Our trial revealed that administration of clarithromycin led to elevate the maximum concentration of lenalidomide acceding to raising the absorption via inhibition of MDR1. On the other hand, administration of clarithromycin did not affect to the baseline plasma concentration of lenalidomide, so we considered that administration of clarithromycin did not affect to renal excretion. For this reason, if the renal function was sufficient, lenalidomide was excreted immediately to urine, so, AUC24 might not rise and toxicities might be tolerable. In conclusion, clarithromycin inhibits MDR1 which is a membrane efflux transporter expressed in the small intestine and raise absorption of lenalidomide. Further studies are warranted. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Sarah Wurts Black ◽  
Jessica D. Sun ◽  
Alex Laihsu ◽  
Nikki Kimura ◽  
Pamela Santiago ◽  
...  

AbstractBackgroundAssessment of sleep/wake by electroencephalography (EEG) and electromyography (EMG) is invasive, resource intensive, and not amenable to rapid screening at scale for drug discovery. In the preclinical development of therapeutics for narcolepsy, efficacy tests are hindered by the lack of a non-EEG/EMG based translational test of symptom severity. The current methods study offers proof-of-principle that PiezoSleep (noninvasive, unsupervised piezoelectric monitoring of gross body movement, together with respiration patterns during behavioral quiescence), can be used to determine sleep/wake as applicable to the development of wake-promoting therapeutics. First, the translational wake-maintenance score (WMS, the ratio of time during the first half of the dark period spent in long wake bouts to short sleep bouts) of the PiezoSleep narcolepsy screen was introduced as a means by which to rank narcoleptic orexin/ataxin-3 mice and wild type mice by sleep/wake fragmentation severity. Accuracy of the WMS to detect narcoleptic phenotypes were determined in genotype-confirmed orexin/ataxin-3 mice and wild type colony mates. The WMS was used to identify the most highly symptomatic mice for resource-intensive EEG/EMG studies for further analysis of specific arousal states. Second, PiezoSleep was demonstrated for use in high-throughput screening of wake-promoting compounds using modafinil in orexin/ataxin-3 and wild type mice.ResultsThe WMS detected a narcoleptic phenotype with 89% sensitivity, 92% specificity and 98% positive predictive value. A 15-fold difference in WMS differentiated wild type littermates from the most severely affected orexin/ataxin-3 mice. Follow-up EEG/EMG study indicated 82% of the orexin/ataxin-3 mice with the lowest wake-maintenance scores met or exceeded the cataplexy-occurrence threshold (≥ 3 bouts) for inclusion in therapeutic efficacy studies. In the PiezoSleep dose-response study, the ED50 for wake-promotion by modafinil was approximately 50 mg/kg in both genotypes. Using unsupervised piezoelectric monitoring, the efficacy of wake-promoting compounds can be determined in a 5-arm study with 60 mice in less than one week—a fraction of the time compared to EEG/EMG studies.ConclusionsThe WMS on the PiezoSleep narcolepsy screen quantifies the inability to sustain wakefulness and provides an accurate measure of the narcoleptic phenotype in mice. PiezoSleep offers rapid, scalable assessment of sleep/wake for high-throughput screening in drug discovery.


Sign in / Sign up

Export Citation Format

Share Document