scholarly journals Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy

2020 ◽  
Vol 117 (12) ◽  
pp. 6640-6650 ◽  
Author(s):  
Xiaodong Wang ◽  
Xiaohui Yang ◽  
Chang Zhang ◽  
Yang Wang ◽  
Tianyou Cheng ◽  
...  

The programmed cell death 1 (PD-1) receptor on the surface of immune cells is an immune checkpoint molecule that mediates the immune escape of tumor cells. Consequently, antibodies targeting PD-1 have shown efficacy in enhancing the antitumor activity of T cells in some types of cancers. However, the potential effects of PD-1 on tumor cells remain largely unknown. Here, we show that PD-1 is expressed across a broad range of tumor cells. The silencing of PD-1 or its ligand, PD-1 ligand 1 (PD-L1), promotes cell proliferation and colony formation in vitro and tumor growth in vivo. Conversely, overexpression of PD-1 or PD-L1 inhibits tumor cell proliferation and colony formation. Moreover, blocking antibodies targeting PD-1 or PD-L1 promote tumor growth in cell cultures and xenografts. Mechanistically, the coordination of PD-1 and PD-L1 activates its major downstream signaling pathways including the AKT and ERK1/2 pathways, thus enhancing tumor cell growth. This study demonstrates that PD-1/PD-L1 is a potential tumor suppressor and potentially regulates the response to anti-PD-1/PD-L1 treatments, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Author(s):  
Xiyang Zhang ◽  
Dongbo Jiang ◽  
Shuya Yang ◽  
Yuanjie Sun ◽  
Yang Liu ◽  
...  

Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66114 ◽  
Author(s):  
Zhihong Shan ◽  
Abbas Shakoori ◽  
Sohrab Bodaghi ◽  
Paul Goldsmith ◽  
Jen Jin ◽  
...  

2000 ◽  
Vol 113 (23) ◽  
pp. 4221-4230 ◽  
Author(s):  
D. Wang ◽  
J.R. Grammer ◽  
C.S. Cobbs ◽  
J.E. Stewart ◽  
Z. Liu ◽  
...  

p125 focal adhesion kinase (p125FAK) is a cytoplasmic tyrosine kinase that is activated upon engagement of integrin cell adhesion receptors, and initiates several signaling events that modulate cell function in vitro. To determine the biologic role of p125FAK in malignant astrocytic tumor cells, U-251MG human malignant astrocytoma cells were stably transfected with p125FAK cDNA using the TET-ON system, and stable clones isolated that exhibited an estimated 5- or 20-fold increase in p125FAK expression on administration of 0.1 or 2.0 microg/ml doxycycline, respectively. In vitro studies demonstrated that induction of p125FAK resulted in a 2- to 3-fold increase in cell migration, increased p130CAS phosphorylation, localization of exogenous p125FAK to focal adhesions, and a 2-fold increase in soft agar growth. To determine the role of p125FAK in vivo, clones were injected stereotactically into the brains of scid mice. A 4.5-fold estimated increase in p125FAK expression was induced by administration of doxycycline in the drinking water. Analysis of xenograft brains demonstrated that, upon induction of p125FAK, there was a 1.6- to 2.8-fold increase in tumor cell number, and an increase in mAb PCNA-labeling of tumor cells in the absence of a change in the apoptotic index. Compared to normal brain, the expression of p125FAK was elevated in malignant astrocytic tumor biopsies from patient samples. These data demonstrate for the first time that p125FAK promotes tumor cell proliferation in vivo, and that the underlying mechanism is not associated with a reduction in apoptosis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2560-2560
Author(s):  
Gregory N. Adams ◽  
Haley Weston ◽  
Leah Rosenfeldt ◽  
Malinda Frederick ◽  
Joseph S. Palumbo

Abstract Activation of cell signaling by thrombin through Protease Activated Receptor-1 (PAR-1) represents one important interface between blood coagulation and cell activation in response to injury and inflammation. In the context of cancer, PAR-1 has been suggested to promote tumor growth through mechanisms coupled to tumor cell proliferation, tumor cell migration, and the development of a supportive tumor stroma. Consistent with this view, both tumor cells and stromal cells express high levels of PAR-1, and elevated PAR-1 expression has been correlated with a poor prognosis across several tumor types. In the current studies, we tested the hypothesis that PAR-1 is a critical driver of tumorigenesis and tumor growth using murine models of genetically-induced prostate and intestinal tumor growth. To define the role of PAR-1 in prostate tumor progression, we interbred mice expressing the TRAMP transgene (transgenic adenocarcinoma of the mouse prostate; SV40 Large T antigen under the control of a probasin promoter) to PAR-1-deficient mice (PAR-1-/-) in order to generate male TRAMP mice with and without PAR-1 expression for detailed analyses of prostate tumor growth. Surprisingly, prostate tumors harvested from PAR-1-/- mice were significantly larger than those harvested from PAR-1+/+ mice. In order to begin to address the PAR-1 expressing cellular compartments responsible for prostate tumor inhibition, we subcutaneously inoculated immunocompetent C57Bl/6-derived PAR-1-/- and control mice with tumor cells derived from a C57Bl/6 TRAMP mouse. TRAMP-derived tumors grew indistinguishably in PAR-1-/- and control mice, suggesting that stromal-cell associated PAR-1 is dispensable for prostate tumor growth. We next tested the effect of tumor cell-intrinsic inhibition of PAR-1 in TRAMP tumor cells by viral transduction with a construct containing an shRNA against murine PAR-1 in parallel to a non-specific shRNA construct. Diminishing tumor cell-associated PAR-1 expression resulted in significantly more rapid tumor growth in vivo. In order to better define the role of tumor cell-intrinsic PAR-1 we harvested TRAMP tumor cells from a PAR-1 deficient mouse and grew these cells in vitro. We transduced these PAR-1-deficient prostate tumor cells with viral vectors conferring expression of WT murine PAR-1 (PAR-1+), a PAR-1 mutant lacking the thrombin cleavage (R41A mutant) or empty vector (PAR-1-). PAR-1- cells grew robustly and similarly to the parental cells in vitro with a doubling time of approximately 48 hours. Cells expressing the R41A mutant PAR-1 also grew robustly and similarly to PAR-1 deficient cells. However, PAR-1+ cells failed to show any signs of cell proliferation over the span of a 4 day observation period. Furthermore, PAR-1 expression dramatically altered the ability of TRAMP cells to demonstrate signs of cell spreading as measured by the frequency of pseudopodia per cell. As a means of determining the role of PAR-1 in tumorigenesis and tumor growth in another spontaneously occurring setting, we interbred PAR-1-/- mice with APCMin/+ mice genetically predisposed to intestinal adenoma formation due to loss of heterozygosity of the tumor suppressor adenomatous polyposis coli gene. Blinded quantitative histological analyses of the intestinal tracts of PAR-1-/- and PAR-1+/+ APCMin/+ mice revealed that PAR-1 deficiency resulted in a significant 2-fold increase in the number of adenomas observed. Furthermore, the adenomas observed in PAR-1-/- mice were significantly larger based on morphometric analyses of adenoma surface area in histological sections. In sum, these data demonstrate a surprising and unexpected role for PAR-1 in the inhibition of tumor growth in the context of two distinct tumor types. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Xia Zhao ◽  
Weilei Dong ◽  
Guifang Luo ◽  
Jing Xie ◽  
Jie Liu ◽  
...  

Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, have been identified as critical regulators in human carcinogenesis. Here, we investigated the precise actions of hsa_circ_0009035 in the progression and radioresistance of cervical cancer (CC). The levels of hsa_circ_0009035, microRNA (miR)-889-3p and homeobox B7 (HOXB7) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease R (RNase R) and Actinomycin D assays were used to assess the stability of hsa_circ_0009035. Cell proliferation, cell cycle progression, apoptosis, migration and invasion were gauged by the Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, respectively. Cell colony formation and survival were determined by the colony formation assay. Targeted correlations among hsa_circ_0009035, miR-889-3p and HOXB7 were examined by the dual-luciferase reporter, RNA immunoprecipitation (RIP) or RNA pull-down assay. Animal studies were performed to evaluate the impact of hsa_circ_0009035 on tumor growth. We found that hsa_circ_0009035 was highly expressed in CC tissues and cells, and it was associated with the radioresistance of CC patients. Moreover, the silencing of hsa_circ_0009035 inhibited CC cell proliferation, migration, invasion, and enhanced apoptosis and radiosensitivity in vitro and weakened tumor growth in vivo. Mechanistically, hsa_circ_0009035 directly targeted miR-889-3p by binding to miR-889-3p, and hsa_circ_0009035 modulated HOXB7 expression through miR-889-3p. HOXB7 was a functional target of miR-889-3p in regulating CC progression and radioresistance in vitro, and hsa_circ_0009035 modulated CC progression and radioresistance in vitro by miR-889-3p. Our current study first identified hsa_circ_0009035 as an important regulation of CC progression and radioresistance at least in part through targeting the miR-889-3p/HOXB7 axis, highlighting its significance as a potential therapeutic target for CC treatment.


2021 ◽  
Author(s):  
Suxin Li ◽  
Haohao Wang ◽  
Luhao Li ◽  
Lin Li ◽  
Qingbo Meng ◽  
...  

Abstract BackgroundHepatocellular carcinoma (HCC) is one of the most commonly diagnosed malignant tumors in the world, and its recurrence and mortality rate are still in high level. In recent years, more and more inhibitors against gene targets have been found to be beneficial to survival. However, the function of homo-sapiens histone H3 associated protein kinase (GSG2) in HCC has not been completely understood. MethodsThe expression of GSG2 in HCC tissues was detected by immunohistochemical staining. The lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown GSG2 expression in HCC cell lines Hep3B2.1-7 and SK-HEP-1. Cell proliferation and colony formation were detected by MTT assay and colony formation assay, respectively, and flow cytometry assay was used to investigate the cell apoptosis in vitro. Mice xenograft model was constructed to detect the functions of GSG2 on tumor growth in vivo. Human Apoptosis Antibody Array was conducted to find the possible mechanism.ResultsGSG2 was overexpressed in HCC tissues compared with adjacent normal tissues, which was positively related to the tumor pathological stage. The knockdown of GSG2 has the functions of inhibiting the progression of HCC, including inhibiting cell proliferation and colony formation and promoting cell apoptosis. Compared with shCtrl group, the shGSG2 group expressed higher apoptotic genes such as caspase 3, caspase 8, Fas and FasL, while lower IGF1, Bcl2 and Bcl-w. ConclusionsOur study showed that knockdown of GSG2 suppresses the tumor growth in vitro and vivo. Therefore, GSG2 might play an oncogenic role in HCC.


2005 ◽  
Vol 19 (12) ◽  
pp. 3085-3096 ◽  
Author(s):  
Manory A. Fernando ◽  
Anthony P. Heaney

Abstract Pituitary tumors are common and cause considerable morbidity due to local invasion and altered hormone secretion. Doxazosin (dox), a selective α1-adrenergic receptor antagonist, used to treat hypertension, also inhibits prostate cancer cell proliferation. We examined the effects of dox on murine and human pituitary tumor cell proliferation in vitro and in vivo. dox treatment inhibited proliferation of murine pituitary tumor cells, induced G0-G1 cell cycle arrest, and reduced phosphorylated retinoblastoma levels. In addition, increased annexin-fluorescein isothiocyanate immunoreactivity and cleaved caspase-3 levels, in keeping with dox-mediated apoptosis, were observed in the human and murine pituitary tumor cells, and dox administration to mice, harboring corticotroph tumors, decreased tumor growth and reduced plasma ACTH levels. dox-mediated antiproliferative and proapoptotic actions were not confined to α-adrenergic receptor-expressing pituitary tumor cells and were unaffected by cotreatment with the α-adrenergic receptor blocker, phenoxybenzamine. dox treatment led to reduced phosphorylated inhibitory κB (IκB)-α expression, and nuclear factor-κB transcription and decreased basal and TNFα-induced proopiomelanocortin transcriptional activation. These results demonstrate that the selective α1-adrenergic receptor antagonist dox inhibits pituitary tumor cell growth in vitro and in vivo by mechanisms that are in part independent of its α-adrenergic receptor-blocking actions and involve down-regulation of nuclear factor-κB signaling. dox is proposed as a possible novel medical therapy for pituitary tumors.


Sign in / Sign up

Export Citation Format

Share Document