scholarly journals CydDC functions as a cytoplasmic cystine reductase to sensitizeEscherichia colito oxidative stress and aminoglycosides

2020 ◽  
Vol 117 (38) ◽  
pp. 23565-23570
Author(s):  
Alexander Mironov ◽  
Tatyana Seregina ◽  
Konstantin Shatalin ◽  
Maxim Nagornykh ◽  
Rustem Shakulov ◽  
...  

l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level ofl-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that inEscherichia colithe component of cytochromebd-I terminal oxidase, the CydDC complex, shuttles excessivel-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that thecydDphenotype, unlike that of the bona fidel-cysteine exportereamA, parallels that of thel-cystine importertcyP.Chromosomal induction ofeamA, but not ofcydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellularl-cysteine, whereas induction ofcydDCortcyPcauses the accumulation of cytoplasmicl-cysteine. Congruently, inactivation ofcydDrenders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction ofcydDCsensitizes cells to oxidative stress and aminoglycosides, which can be suppressed byeamAoverexpression. Furthermore, inactivation of the ferric uptake regulator (fur)in Ptet-cydDCor Ptet-tcyPcells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2. These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to anl-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.

Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2015 ◽  
Vol 197 (23) ◽  
pp. 3626-3628 ◽  
Author(s):  
Larry Reitzer

In this issue of theJournal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629–3644, 2015,http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restrictedEscherichia coligrown with sublethal H2O2when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.


2000 ◽  
Vol 66 (9) ◽  
pp. 3911-3916 ◽  
Author(s):  
Sang Ho Choi ◽  
David J. Baumler ◽  
Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.


2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Qingqing Gao ◽  
Le Xia ◽  
Xiaobo Wang ◽  
Zhengqin Ye ◽  
Jinbiao Liu ◽  
...  

ABSTRACTStrains of avian pathogenicEscherichia coli(APEC), the common pathogen of avian colibacillosis, encounter reactive oxygen species (ROS) during the infection process. Superoxide dismutases (SODs), acting as antioxidant factors, can protect against ROS-mediated host defenses. Our previous reports showed that thesodAgene (encoding a Mn-cofactor-containing SOD [MnSOD]) is highly expressed during the septicemic infection process of APEC.sodAhas been proven to be a virulence factor of certain pathogens, but its role in the pathogenicity of APEC has not been fully identified. In this study, we deleted thesodAgene from the virulent APEC O2 strain E058 and examined thein vitroandin vivophenotypes of the mutant. ThesodAmutant was more sensitive to hydrogen peroxide in terms of both its growth and viability than was the wild type. The ability to form a biofilm was weakened in thesodAmutant. ThesodAmutant was significantly more easily phagocytosed by chicken macrophages than was the wild-type strain. Chicken infection assays revealed significantly attenuated virulence of thesodAmutant compared with the wild type at 24 h postinfection. The virulence phenotype was restored by complementation of thesodAgene. Quantitative real-time reverse transcription-PCR revealed that the inactivation ofsodAreduced the expression of oxidative stress response geneskatE,perR, andosmCbut did not affect the expression ofsodBandsodC. Taken together, our studies indicate that SodA is important for oxidative resistance and virulence of APEC E058.IMPORTANCEAvian colibacillosis, caused by strains of avian pathogenicEscherichia coli, is a major bacterial disease of severe economic significance to the poultry industry worldwide. The virulence mechanisms of APEC are not completely understood. This study investigated the influence of an antioxidant protein, SodA, on the phenotype and pathogenicity of APEC O2 strain E058. This is the first report demonstrating that SodA plays an important role in protecting a specific APEC strain against hydrogen peroxide-induced oxidative stress and contributes to the virulence of this pathotype strain. Identification of this virulence factor will enhance our knowledge of APEC pathogenic mechanisms, which is crucial for designing successful strategies against associated infections and transmission.


2014 ◽  
Vol 197 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Lu Zhang ◽  
James R. Alfano ◽  
Donald F. Becker

The oxidation ofl-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type andputAmutant strains ofEscherichia coli. Initial stress assays revealed that theputAmutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in theputAmutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded bykatG) expression and activity. Furthermore, the ΔkatGstrain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression ofkatGalong with several other genes involved in oxidative stress defense. In addition tokatG, proline increased the expression ofgrxA(glutaredoxin 1) andtrxC(thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance inE. colivia a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jing Wang ◽  
Wei Zhang ◽  
Sixin Wang ◽  
Yamin Wang ◽  
Xu Chu ◽  
...  

Probiotics are widely used for protection against stress-induced intestinal dysfunction. Oxidative stress plays a critical role in gastrointestinal disorders. It is established that probiotics alleviate oxidative stress; however, the mechanism of action has not been elucidated. We developed an in vitro intestinal porcine epithelial cells (IPEC-J2) model of oxidative stress to explore the antioxidant effect and potential mode of action of Lactobacillus plantarum ZLP001. The IPEC-J2 cells were preincubated with and without L. plantarum ZLP001 for 3 h and then exposed to hydrogen peroxide (H2O2) for 4 h. Pretreatment with L. plantarum ZLP001 protected IPEC-J2 cells against H2O2-induced oxidative damage as indicated by cell viability assays and significantly alleviated apoptosis elicited by H2O2. L. plantarum ZLP001 pretreatment decreased reactive oxygen species production and the cellular malondialdehyde concentration and increased the mitochondrial membrane potential compared with H2O2 treatment alone, suggesting that L. plantarum ZLP001 promotes the maintenance of redox homeostasis in the cells. Furthermore, L. plantarum ZLP001 regulated the expression and generation of some antioxidant enzymes, thereby activating the antioxidant defense system. Treatment with L. plantarum ZLP001 led to nuclear erythroid 2-related factor 2 (Nrf2) enrichment in the nucleus compared with H2O2 treatment alone. Knockdown of Nrf2 significantly weakened the alleviating effect of L. plantarum ZLP001 on antioxidant stress in IPEC-J2 cells, suggesting that Nrf2 is involved in the antioxidative effect of L. plantarum ZLP001. Collectively, these results indicate that L. plantarum ZLP001 is a promising probiotic bacterium that can potentially alleviate oxidative stress.


2019 ◽  
Vol 47 (14) ◽  
pp. 7592-7604 ◽  
Author(s):  
Manlu Zhu ◽  
Xiongfeng Dai

AbstractTo cope with harsh circumstances, bacterial cells must initiate cellular stress response programs, which demands the de novo synthesis of many stress defense proteins. Reactive oxygen species (ROS) is a universal environmental stressor for both prokaryotic cells and eukaryotic cells. However, the physiological burden that limits the survival of bacterial cells during oxidative stress remains elusive. Here we quantitatively characterize the cell growth and translational elongation rate of Escherichia coli cells treated with different doses of hydrogen peroxide. Cell growth is immediately arrested by low to moderate levels of hydrogen peroxide, but completely recovers after a certain lag time. The lag time depends positively on the dose of hydrogen peroxide. During the lag time, translational elongation rate drops by as much as ∼90% at initial stage and recovers to its normal state later, a phenomenon resulting from the dramatic alteration in cellular tRNA pools during oxidative stress. However, translational elongation is completely stalled at a certain threshold-level of hydrogen peroxide, at which cells ultimately fail to resume growth. Although the mRNA transcription of oxidative defense genes in oxyR regulon is dramatically induced upon hydrogen peroxide treatment, the extreme slow-down of translational elongation during high levels of hydrogen peroxide has severely compromised the timely synthesis of those oxidative defense proteins. Our study demonstrates that the tRNA-limited translational elongation is a key physiological bottleneck that the bacteria must overcome to counteract ROS, and the maintenance of translational elongation rate for timely synthesis of stress defense proteins is crucial for cells to smoothly get over the oxidative stress.


Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 805-812 ◽  
Author(s):  
Bradley L. Bearson ◽  
In Soo Lee ◽  
Thomas A. Casey

Micro-organisms may simultaneously encounter multiple stresses in their environment. To investigate the protection that several known Escherichia coli O157 : H7 acid-resistance systems might provide against both oxidative and acid stress, the addition of diamide, a membrane-permeable thiol-specific oxidizing agent, or hydrogen peroxide were used concurrent with acid challenge at pH 2.5 to determine bacterial survival. The addition of either diamide or hydrogen peroxide decreased bacterial survival in a dose-dependent manner for E. coli O157 : H7 during challenge at pH 2.5 following overnight growth in LB MES pH 5.5 (acid-resistance system 1, AR1). In contrast, the presence of either glutamate or arginine during challenge provided significant protection against diamide- and hydrogen peroxide-induced oxidative stress during pH 2.5 acid challenge. Oxidative stress protection during acid challenge required gadC and adiA for the glutamate- (AR2) and arginine- (AR3) dependent acid-resistance systems, respectively. In addition, maximal protection against oxidative stress in the presence of glutamate required a low external pH (pH 2.5), since pH 5.5 did not protect. This study demonstrates that the glutamate- and arginine-dependent acid-resistance systems of E. coli O157 : H7 can simultaneously protect against oxidative stress during extreme acid challenge.


Sign in / Sign up

Export Citation Format

Share Document