scholarly journals Declining greenness in Arctic-boreal lakes

2021 ◽  
Vol 118 (15) ◽  
pp. e2021219118
Author(s):  
Catherine Kuhn ◽  
David Butman

The highest concentration of the world’s lakes are found in Arctic-boreal regions [C. Verpoorter, T. Kutser, D. A. Seekell, L. J. Tranvik, Geophys. Res. Lett. 41, 6396–6402 (2014)], and consequently are undergoing the most rapid warming [J. E. Overland et al., Arctic Report Card (2018)]. However, the ecological response of Arctic-boreal lakes to warming remains highly uncertain. Historical trends in lake color from remote sensing observations can provide insights into changing lake ecology, yet have not been examined at the pan-Arctic scale. Here, we analyze time series of 30-m Landsat growing season composites to quantify trends in lake greenness for >4 × 105 waterbodies in boreal and Arctic western North America. We find lake greenness declined overall by 15% from the first to the last decade of analysis within the 6.3 × 106-km2 study region but with significant spatial variability. Greening declines were more likely to be found in areas also undergoing increases in air temperature and precipitation. These findings support the hypothesis that warming has increased connectivity between lakes and the land surface [A. Bring et al., J. Geophys. Res. Biogeosciences 121, 621–649 (2016)], with implications for lake carbon cycling and energy budgets. Our study provides spatially explicit information linking climate to pan-Arctic lake color changes, a finding that will help target future ecological monitoring in remote yet rapidly changing regions.

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 675 ◽  
Author(s):  
Almazroui

This paper investigates the temperature and precipitation extremes over the Arabian Peninsula using data from the regional climate model RegCM4 forced by three Coupled Model Intercomparison Project Phase 5 (CMIP5) models and ERA–Interim reanalysis data. Indices of extremes are calculated using daily temperature and precipitation data at 27 meteorological stations located across Saudi Arabia in line with the suggested procedure from the Expert Team on Climate Change Detection and Indices (ETCCDI) for the present climate (1986–2005) using 1981–2000 as the reference period. The results show that RegCM4 accurately captures the main features of temperature extremes found in surface observations. The results also show that RegCM4 with the CLM land–surface scheme performs better in the simulation of precipitation and minimum temperature, while the BATS scheme is better than CLM in simulating maximum temperature. Among the three CMIP5 models, the two best performing models are found to accurately reproduce the observations in calculating the extreme indices, while the other is not so successful. The reason for the good performance by these two models is that they successfully capture the circulation patterns and the humidity fields, which in turn influence the temperature and precipitation patterns that determine the extremes over the study region.


2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Animesh Choudhury ◽  
Avinash Chand Yadav ◽  
Stefania Bonafoni

The Himalayan region is one of the most crucial mountain systems across the globe, which has significant importance in terms of the largest depository of snow and glaciers for fresh water supply, river runoff, hydropower, rich biodiversity, climate, and many more socioeconomic developments. This region directly or indirectly affects millions of lives and their livelihoods but has been considered one of the most climatically sensitive parts of the world. This study investigates the spatiotemporal variation in maximum extent of snow cover area (SCA) and its response to temperature, precipitation, and elevation over the northwest Himalaya (NWH) during 2000–2019. The analysis uses Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 8-day composite snow Cover product (MOD10A2), MODIS/Terra/V6 daily land surface temperature product (MOD11A1), Climate Hazards Infrared Precipitation with Station data (CHIRPS) precipitation product, and Shuttle Radar Topography Mission (SRTM) DEM product for the investigation. Modified Mann-Kendall (mMK) test and Spearman’s correlation methods were employed to examine the trends and the interrelationships between SCA and climatic parameters. Results indicate a significant increasing trend in annual mean SCA (663.88 km2/year) between 2000 and 2019. The seasonal and monthly analyses were also carried out for the study region. The Zone-wise analysis showed that the lower Himalaya (184.5 km2/year) and the middle Himalaya (232.1 km2/year) revealed significant increasing mean annual SCA trends. In contrast, the upper Himalaya showed no trend during the study period over the NWH region. Statistically significant negative correlation (−0.81) was observed between annual SCA and temperature, whereas a nonsignificant positive correlation (0.47) existed between annual SCA and precipitation in the past 20 years. It was also noticed that the SCA variability over the past 20 years has mainly been driven by temperature, whereas the influence of precipitation has been limited. A decline in average annual temperature (−0.039 °C/year) and a rise in precipitation (24.56 mm/year) was detected over the region. The results indicate that climate plays a vital role in controlling the SCA over the NWH region. The maximum and minimum snow cover frequency (SCF) was observed during the winter (74.42%) and monsoon (46.01%) season, respectively, while the average SCF was recorded to be 59.11% during the study period. Of the SCA, 54.81% had a SCF above 60% and could be considered as the perennial snow. The elevation-based analysis showed that 84% of the upper Himalaya (UH) experienced perennial snow, while the seasonal snow mostly dominated over the lower Himalaya (LH) and the middle Himalaya (MH).


2022 ◽  
Vol 15 (1) ◽  
pp. 75-104
Author(s):  
Niccolò Tubini ◽  
Riccardo Rigon

Abstract. This paper presents WHETGEO and its 1D deployment: a new physically based model simulating the water and energy budgets in a soil column. The purpose of this contribution is twofold. First, we discuss the mathematical and numerical issues involved in solving the Richardson–Richards equation, conventionally known as the Richards equation, and the heat equation in heterogeneous soils. In particular, for the Richardson–Richards equation (R2) we take advantage of the nested Newton–Casulli–Zanolli (NCZ) algorithm that ensures the convergence of the numerical solution in any condition. Second, starting from numerical and modelling needs, we present the design of software that is intended to be the first building block of a new customizable land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code, adopting the object-oriented paradigm and a generic programming approach in order to improve its usability and expandability. WHETGEO is fully integrated into the GEOframe/OMS3 system, allowing the use of the many ancillary tools it provides. Finally, the paper presents the 1D deployment of WHETGEO, WHETGEO-1D, which has been tested against the available analytical solutions presented in the Appendix.


2019 ◽  
Vol 23 (12) ◽  
pp. 4891-4907 ◽  
Author(s):  
Robert N. Armstrong ◽  
John W. Pomeroy ◽  
Lawrence W. Martz

Abstract. Land surface evaporation has considerable spatial variability that is not captured by point-scale estimates calculated from meteorological data alone. Knowing how evaporation varies spatially remains an important issue for improving parameterisations of land surface schemes and hydrological models and various land management practices. Satellite-based and aerial remote sensing has been crucial for capturing moderate- to larger-scale surface variables to indirectly estimate evaporative fluxes. However, more recent advances for field research via unmanned aerial vehicles (UAVs) now allow for the acquisition of more highly detailed surface data. Integrating models that can estimate “actual” evaporation from higher-resolution imagery and surface reference data would be valuable to better examine potential impacts of local variations in evaporation on upscaled estimates. This study introduces a novel approach for computing a normalised ratiometric index from surface variables that can be used to obtain more-realistic distributed estimates of actual evaporation. For demonstration purposes the Granger–Gray evaporation model (Granger and Gray, 1989) was applied at a rolling prairie agricultural site in central Saskatchewan, Canada. Visible and thermal images and meteorological reference data required to parameterise the model were obtained at midday. Ratiometric indexes were computed for the key surface variables albedo and net radiation at midday. This allowed point observations of albedo and mean daily net radiation to be scaled across high-resolution images over a large study region. Albedo and net radiation estimates were within 5 %–10 % of measured values. A daily evaporation estimate for a grassed surface was 0.5 mm (23 %) larger than eddy covariance measurements. Spatial variations in key factors driving evaporation and their impacts on upscaled evaporation estimates are also discussed. The methods applied have two key advantages for estimating evaporation over previous remote-sensing approaches: (1) detailed daily estimates of actual evaporation can be directly obtained using a physically based evaporation model, and (2) analysis of more-detailed and more-reliable evaporation estimates may lead to improved methods for upscaling evaporative fluxes to larger areas.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2738
Author(s):  
Andrea Reimuth ◽  
Veronika Locherer ◽  
Martin Danner ◽  
Wolfram Mauser

The strong expansion of residential rooftop photovoltaic (PV) and battery storage systems of recent years is expected to rise further. However, it is not yet clear to which degree buildings will be equipped with decentral energy producers. This study seeks to quantify the effects of different PV and battery installation rates on the residential residual loads and grid balancing flows. A land surface model with an integrated residential energy component is applied, which maintains spatial peculiarities and allows a building-specific set-up of PV systems, batteries, and consumption loads. The study area covers 3163 residential buildings located in a municipality in the south of Germany. The obtained results show minor impacts on the residual loads for a PV installation rate of less than 10%. PV installation rates of one third of all residential buildings of the study region lead to the highest spatial balancing via the grid. The rise in self-consumption when utilizing batteries leads to declined grid balancing between the buildings. For high PV installation rates, regional balancing diminishes, whereas energy excesses rise to 60%. They can be decreased up to 10% by the utilization of battery systems. Therefore, we recommend subsidy programs adjusted to the respective PV installation rates.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 465
Author(s):  
Bernard Cappelaere ◽  
Denis Feurer ◽  
Théo Vischel ◽  
Catherine Ottlé ◽  
Hassane Bil-Assanou Issoufou ◽  
...  

In distributed land surface modeling (LSM) studies, uncertainty in the rainfields that are used to force models is a major source of error in predicted land surface response variables. This is particularly true for applications in the African Sahel region, where weak knowledge of highly time/space-variable convective rainfall in a poorly monitored region is a considerable obstacle to such developments. In this study, we used a field-based stochastic rainfield generator to analyze the propagation of the rainfall uncertainty through a distributed land surface model simulating water and energy fluxes in Sahelian ecosystems. Ensemble time/space rainfields were generated from field observations of the local AMMA-CATCH-Niger recording raingauge network. The rainfields were then used to force the SEtHyS-Savannah LSM, yielding an ensemble of time/space simulated fluxes. Through informative graphical representations and innovative diagnosis metrics, these outputs were analyzed to separate the different components of flux variability, among which was the uncertainty represented by ensemble-wise variability. Scale dependence was analyzed for each flux type in the water and energy budgets, producing a comprehensive picture of uncertainty propagation for the various flux types, with its relationship to intrinsic space/time flux variability. The study was performed over a 2530 km2 domain over six months, covering an entire monsoon season and the subsequent dry-down, using a kilometer/daily base resolution of analysis. The newly introduced dimensionless uncertainty measure, called the uncertainty coefficient, proved to be more effective in describing uncertainty patterns and relationships than a more classical measure based on variance fractions. Results show a clear scaling relationship in uncertainty coefficients between rainfall and the dependent fluxes, specific to each flux type. These results suggest a higher sensitivity to rainfall uncertainty for hydrological than for agro-ecological or meteorological applications, even though eddy fluxes do receive a substantial part of that source uncertainty.


2004 ◽  
Vol 85 (1) ◽  
pp. 65-78 ◽  
Author(s):  
George R. Diak ◽  
John R. Mecikalski ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
William P. Kustas ◽  
...  

Since the advent of the meteorological satellite, a large research effort within the community of earth scientists has been directed at assessing the components of the land surface energy balance from space. The development of these techniques from first efforts to the present time are reviewed, and the integrated system used to estimate the radiative and turbulent land surface fluxes is described. This system is now running in real time over the continental United States at a resolution of 10 km, producing daily and time-integrated flux components.


2014 ◽  
Vol 7 (6) ◽  
pp. 2831-2857 ◽  
Author(s):  
S. Endrizzi ◽  
S. Gruber ◽  
M. Dall'Amico ◽  
R. Rigon

Abstract. GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.


2020 ◽  
Vol 21 (1) ◽  
pp. 143-159
Author(s):  
Christine M. Albano ◽  
Michael D. Dettinger ◽  
Adrian A. Harpold

AbstractAtmospheric rivers (ARs) significantly influence precipitation and hydrologic variability in many areas of the world, including the western United States. As ARs are increasingly recognized by the research community and the public, there is a need to more precisely quantify and communicate their hydrologic impacts, which can vary from hazardous to beneficial depending on location and on the atmospheric and land surface conditions prior to and during the AR. This study leverages 33 years of atmospheric and hydrologic data for the western United States to 1) identify how water vapor amount, wind direction and speed, temperature, and antecedent soil moisture conditions influence precipitation and hydrologic responses (runoff, recharge, and snowpack) using quantile regression and 2) identify differences in hydrologic response types and magnitudes across the study region. Results indicate that water vapor amount serves as a primary control on precipitation amounts. Holding water vapor constant, precipitation amounts vary with wind direction, depending on location, and are consistently greater at colder temperatures. Runoff efficiencies further covary with temperature and antecedent soil moisture, with precipitation falling as snow and greater available water storage in the soil column mitigating flood impacts of large AR events. This study identifies the coastal and maritime mountain ranges as areas with the greatest potential for hazardous flooding and snowfall impacts. This spatially explicit information can lead to better understanding of the conditions under which ARs of different precipitation amounts are likely to be hazardous at a given location.


Sign in / Sign up

Export Citation Format

Share Document