scholarly journals Fever supports CD8+ effector T cell responses by promoting mitochondrial translation

2021 ◽  
Vol 118 (25) ◽  
pp. e2023752118
Author(s):  
David O’Sullivan ◽  
Michal A. Stanczak ◽  
Matteo Villa ◽  
Franziska M. Uhl ◽  
Mauro Corrado ◽  
...  

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


2021 ◽  
Vol 9 (7) ◽  
pp. e002503
Author(s):  
Miok Kim ◽  
Yong Ki Min ◽  
Jinho Jang ◽  
Hyejin Park ◽  
Semin Lee ◽  
...  

BackgroundAlthough cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC.MethodsTo understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings.ResultsWe initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay.ConclusionsThe intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2034-2034
Author(s):  
Parvathi Ranganathan ◽  
Katiri Snyder ◽  
Nina Zizter ◽  
Hannah K. Choe ◽  
Robert A Baiocchi ◽  
...  

Abstract Introduction: Acute graft-versus-host disease (aGVHD), a T cell-mediated immunological disorder is the leading cause of non-relapse mortality in patients receiving allogeneic bone marrow transplants. Protein arginine methyltransferase 5 (PRMT5) catalyzes symmetric dimethylation (me2s) of arginine (R) residues on histones (primarily H3R8 and H3R4) and other proteins. PRMT5 is overexpressed in many leukemias and lymphomas, and epigenetic changes driven by PRMT5 lead to repression of tumor suppressors and promote growth and survival of cancer cells. Recently it was shown that T cells are sensitive to R-methylation and PRMT5 promotes activation of memory T helper cells. Here we investigate: 1) mechanisms by which PRMT5 regulates T cell function; and 2) PRMT5 inhibition as a therapeutic strategy for aGVHD. Materials and Methods: Splenic T cells were isolated from lethally irradiated B6D2F1 mice that received either T cell depleted bone marrow (TCD-BM) or TCD-BM with C57/BL6 (B6) allogeneic splenocytes on day 21 post-transplant. In vitro activation of B6 T cells was achieved with CD3/CD28 Dynabeads or co-culture with allogeneic BM-derived dendritic cells. PRMT5 expression (RT-PCR, western blot) and function (H3R8me2s western blot) were evaluated. PRT220, a novel inhibitor of PRMT5, was used to evaluate PRMT5 inhibition on T cell function in vitro and in vivo. We assessed T cell proliferation (Cell Trace Violet, Ki67), apoptosis (Annexin V), cytokine secretion (ELISA, flow cytometry), cell cycle (PI incorporation), and cell signaling (western blot). Lethally irradiated F1 recipients received TCD-BM only (10x106 cells) or TCD-BM + B6 splenocytes (20 x 106). Recipients of allogeneic splenocytes were treated with PRT220 (2mg/kg) or vehicle by oral gavage once weekly starting day 7 post-transplant. Mice were monitored for survival and clinical aGVHD scores. Results: PRMT5 expression and function is upregulated following T cell activation. Inhibition of PRMT5 reduces T cell proliferation and IFN-g secretion. PRMT5 inhibition in CD3/CD28 stimulated T cells results in disruption of multiple histone epigenetic marks, cell-cycle progression (via G1 arrest) and perturbation of ERK-MAPK signaling cascades. Finally, administration of PRT220 resulted in significantly prolonging the survival of allo-transplanted recipient mice (median survival, PRT220 vs. vehicle, 36.5 vs. 26 days, p=0.01). PRT220-treated recipients also exhibited significant lower aGVHD clinical (p<0.05), pathological scores (p<0.05) and lower serum TNF-a (p<0.05) and IFN-g (p<0.05) than vehicle-treated recipients. Conclusions: PRMT5 expression and function are upregulated in activated T cells. Inhibition of PRMT5 function using a novel and specific small-molecule inhibitor, PRT220, down-regulates T cells proliferative and effector response, induces cell-cycle arrest and perturbs signaling pathways. PRT220 shows potent biological activity in vivo by reducing aGVHD clinical severity and significantly prolonging survival in mouse models of aGVHD. Therefore, PRMT5 is a novel and druggable target for aGVHD. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ioana Sandu ◽  
Dario Cerletti ◽  
Manfred Claassen ◽  
Annette Oxenius

Abstract Chronic viral infections are often associated with impaired CD8+ T cell function, referred to as exhaustion. Although the molecular and cellular circuits involved in CD8+ T cell exhaustion are well defined, with sustained presence of antigen being one important parameter, how much T cell receptor (TCR) signaling is actually ongoing in vivo during established chronic infection is unclear. Here, we characterize the in vivo TCR signaling of virus-specific exhausted CD8+ T cells in a mouse model, leveraging TCR signaling reporter mice in combination with transcriptomics. In vivo signaling in exhausted cells is low, in contrast to their in vitro signaling potential, and despite antigen being abundantly present. Both checkpoint blockade and adoptive transfer of naïve target cells increase TCR signaling, demonstrating that engagement of co-inhibitory receptors curtails CD8+ T cell signaling and function in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3237-3237
Author(s):  
Carolina S. Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract The adoptive transfer of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) clones that have been isolated and expanded in vitro is a promising treatment modality for both human malignancies and infections. However, establishing immunity of sufficient magnitude and persistence for sustained efficacy is a limitation of this approach. Recent studies have identified a critical role for cytokine signaling including that mediated by IL15 in the establishment and maintenance of CD8+ T cell memory, suggesting that protocols for generating and transferring antigen-specific T cells might be improved. Interleukin-2 (IL2) is the T cell growth factor that has been widely used in vitro and in vivo for promoting T cell proliferation and persistence, but prolonged exposure of T cells to IL2 can enhance susceptibility to cell death and limit CD8+ memory T cell survival. IL15 is a novel cytokine that shares some activities with IL2 such as the induction of T cell proliferation, but exerts contrasting effects on the homeostasis of CD8+ T cell memory in experimental models. Here, we study the utility of IL15 to enhance the long-term survival and function of human and macaque antigen-specific CD8+ CTL clones in vitro. Human and macaque CD8+ CTL clones reactive against CMV were isolated by limiting dilution, expanded over 14 days in the presence of IL2 or IL15 (1–10 ng/ml), and then rested for &gt;4 weeks in media alone and with IL2 or IL15 at 0.01–10 ng/ml. Surviving T cells were enumerated at intervals, monitored for cell surface phenotype, and assayed for cytotoxicity by chromium release assay. CTL expanded in IL2 or IL15 proliferated equivalently over 14 days with a median of 1100 and 1400 fold increase in number, displayed surface markers consistent with an effector memory phenotype (CD45RA−CD62L−CCR7−CD28−), and showed comparable cytotoxicity (n=4). However, exposure after 14 days to IL15 at doses as little as 0.05-0.1 ng/ml greatly enhanced the survival of the CD8+ CTL as determined by Annexin V staining. By contrast, cells cultured without cytokines or with IL2 declined &gt;80% in number over 3 or 11 days, respectively. Of note, IL15 at higher doses (&gt;0.5 ng/ml), but not IL2, efficiently promoted sustained cell growth illustrated by labeling cells with CFSE. Cells cultured with IL15 displayed 1.5-fold increased expression of antiapoptotic molecules such as Bcl-xL and Bcl-2 over those plated in IL2 (n=4), indicating IL15 mediated its effects at least in part by preventing apoptosis. Of note, the cytotoxicity of CTL rested in IL2 was markedly reduced (&gt;60%, n=3), while the presence of IL15 permitted for sustained CTL function and expansion after restimulation. The responses of human and macaque CTL clones to IL15 were equivalent suggesting in vivo studies of T cell transfer in macaques may be predictive of results in humans. We have constructed retroviral vectors encoding intracytoplasmic truncated macaque CD34 or CD19 genes that could serve as nonimmunogenic selectable marker to track macaque T cells after transfer. Macaque T cells were efficiently transduced to express CD34t and CD19t (&gt;50%), and enriched to high purity by immunomagnetic selection. Studies to examine the safety and utility of IL15 on the survival of adoptively transferred CTL in macaques are in progress. Collectively, our data support that novel cytokines such as IL15 may prove useful to augment the long-term survival and effector function of ex vivo expanded antigen-specific CD8+ CTL clones after transfer.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A143-A143
Author(s):  
Jonathan Terrett ◽  
Brigid Mcewan ◽  
Daniel Hostetter ◽  
Luis Gamboa ◽  
Meghna Kuppuraju ◽  
...  

BackgroundCD33 is the most consistently expressed antigen in AML, with high levels and homogeneous expression observed in malignant AML cells from most patients, including those with relapsed disease. Normal myelomonocytic cell lineages and a percentage of hematopoietic progenitors also express CD33, and the extreme myeloablation caused by the CD33-targeted antibody-drug conjugate (ADC) gemtuzumab ozogamicin reinforced concerns about targeting this antigen with more potent agents such as T-cell engaging bispecific antibodies and CAR-T cells. We have shown previously that allogeneic CRISPR/Cas9 gene-edited CAR-T cells targeting CD33 with TRAC disruption to reduce GvHD and B2M disruption to reduce allogeneic host rejection could eliminate tumors in xenograft models of AMLMethodsGiven that off-target activity of the toxin could contribute to the myeloablation seen with CD33-targeted ADCs, we created in vitro and in vivo models to examine reconstitution of the myeloid compartment following treatment of CD33-targeted allogeneic CAR-T cells.ResultsAlthough co-culture of CD34+ stem cells in vitro with our CD33-targeted allogeneic CAR-T cells did significantly deplete the cell population, colonies still formed after removal of the CAR-T cells as the presumably CD33-negative stem/progenitor cells expanded and differentiated. A similar phenomenon was observed in vivo with CD34 humanized mice bearing an AML tumor (THP-1 cells) and treated with the CD33-targeted allogeneic CAR-T cells. The CAR-T cells completely eradicated the THP-1 tumor but did not lead to long-term myelosuppression or B cell aplasia.ConclusionsThus, allogeneic CRISPR/Cas9 multiplex gene-edited CD33-targeted CAR-T cell therapy may be both efficacious and tolerable in AML.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1885-1885
Author(s):  
Antonio Pierini ◽  
Caitlin Moffett ◽  
Dominik Schneidawind ◽  
Jeanette Baker ◽  
Hidekazu Nishikii ◽  
...  

Abstract CD4+ CD25+ FoxP3+ regulatory T cells (Treg) have been shown to effectively prevent graft versus host disease (GvHD) when adoptively transferred in murine models of hematopoietic cell transplantation (HCT) and phase I/II clinical trials. Critical limitations to the clinical application of Treg are the paucity of cells and limited knowledge of the mechanism(s) of in vivo function. In physiologic conditions Treg regulate immune responses during inflammation. We hypothesized that inflammatory conditions in GvHD modify Treg characteristics and function. To test this hypothesis, we primed Treg with irradiated (3000 cGy) peripheral blood from acute GvHD (aGvHD) affected mice for 20-24 hours and then transferred these cells in a mouse model of GvHD where allogeneic T cell depleted bone marrow (TCD BM) from C57BL/6 mice was transplanted into lethally irradiated (8 Gy) BALB/c recipients together with 7.5x105 to 1x106 /animal donor derived conventional CD4+ and CD8+ T cells (Tcon). C57BL/6 Treg primed with irradiated aGvHD peripheral blood were injected at day 0 after HCT for preventing GvHD or at day +7 or +8 as GvHD treatment. Their adoptive transfer resulted in improved survival in comparison to unprimed natural occurring Treg when used for both GvHD prevention (p=0.01) and treatment (p=0.04). Moreover treatment with irradiated aGvHD peripheral blood-primed Treg did not impact graft versus tumor effects in a mouse model of T cell mediated tumor killing. BLI demonstrated that injected allogeneic Tcon completely cleared previously infused luc+ A20 tumor cells even in the presence of primed Treg (primed Treg + Tcon + A20 vs A20 alone p<0.001). Irradiated aGvHD peripheral blood-primed Treg express increased levels of activation markers with suppressive function such as CTLA4 (p<0.001) and LAG3 (p<0.05) in comparison to unprimed Treg in vitro. We also found that Treg primed with irradiated cells of aGvHD affected animals after removing the serum did not enhance the expression of the same markers (p>0.05) demonstrating that serum from aGvHD animals is required for Treg priming and function. We further tested the ability of several inflammatory cytokines that are normally secreted during GvHD such as IFN-γ, IL-6, IL-12 and TNFα to induce similar in vitro Treg activation. We found that TNFɑ selectively activated Treg without impacting CD4+ FoxP3- T cells. TNFɑ-primed Treg have increased expression of activation markers such as CD69 (p<0.0001), CD25 (p<0.0001), and LAG3 (p=0.0002), produce a greater amount of suppressive cytokines such as IL-10 (p=0.03) and TGF-β (p=0.02), and enhance the expression of homing markers such as CD62L (p=0.005) that are required for in vivo function. TNFɑ-primed Treg had increased ability to proliferate (p=0.02) and, at the same time, to suppress Tcon proliferation (p=0.04) in a mixed lymphocyte reaction against irradiated allogeneic splenocytes, while, on the contrary, TNFɑ-primed Tcon had reduced ability to proliferate in similar conditions in comparison to unprimed Tcon (p=0.0004). To test the effect of TNFɑ priming on in vivo Tcon proliferation we injected TNFɑ-primed and unprimed luc+ Tcon in allogeneic BALB/c Rag2-/- γ-chain-/- immune deficient animals that were sublethally irradiated (400 cGy). BLI at day +7 after Tcon injection revealed reduced TNFɑ-primed Tcon in vivo proliferation (p=0.01) that resulted in milder GvHD symptoms (p=0.02). Finally, in a GvHD prevention mouse model TNFɑ-primed Treg infused at 1:10 Treg/Tcon ratio resulted in improved animal survival as compared to unprimed Treg (p=0.02), demonstrating enhanced efficacy of TNFɑ priming in the in vivo function of Treg. In summary, our study demonstrates that Treg respond to TNFɑ acquiring an activated status resulting in increased function. As TNFɑ is produced by several immune cells during inflammation, our work elucidates aspects of the physiologic mechanisms of Treg function. Furthermore TNFɑ priming of Treg in vitro provides a new tool to optimize Treg cellular therapies also allowing for the use of a reduced cell number for GvHD prevention and treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1764-1770 ◽  
Author(s):  
Karin Elflein ◽  
Marta Rodriguez-Palmero ◽  
Thomas Kerkau ◽  
Thomas Hünig

AbstractSlow recovery of T-cell numbers and function contributes to the high incidence of life-threatening infections after cytotoxic cancer therapies. We have tested the therapeutic potential of a novel class of superagonistic CD28–specific antibodies that induce polyclonal T-cell proliferation without T-cell receptor engagement in an experimental rat model of T lymphopenia. We show that in lethally irradiated, bone marrow–reconstituted hosts, CD28 superagonist is able to dramatically accelerate repopulation by a small inoculum of mature, allotype-marked T cells. CD28-driven recovery of CD4 cells was superior to that of CD8 T cells. CD28 superagonist– expanded CD4 T cells had maintained repertoire diversity and were functional both in vitro and in vivo, suggesting that treatment with a human CD28–specific superagonist will protect T-lymphopenic patients from opportunistic infections.


Sign in / Sign up

Export Citation Format

Share Document