scholarly journals CAP1 binds and activates adenylyl cyclase in mammalian cells

2021 ◽  
Vol 118 (24) ◽  
pp. e2024576118
Author(s):  
Xuefeng Zhang ◽  
Alejandro Pizzoni ◽  
Kyoungja Hong ◽  
Nyla Naim ◽  
Chao Qi ◽  
...  

CAP1 (Cyclase-Associated Protein 1) is highly conserved in evolution. Originally identified in yeast as a bifunctional protein involved in Ras-adenylyl cyclase and F-actin dynamics regulation, the adenylyl cyclase component seems to be lost in mammalian cells. Prompted by our recent identification of the Ras-like small GTPase Rap1 as a GTP-independent but geranylgeranyl-specific partner for CAP1, we hypothesized that CAP1-Rap1, similar to CAP-Ras-cyclase in yeast, might play a critical role in cAMP dynamics in mammalian cells. In this study, we report that CAP1 binds and activates mammalian adenylyl cyclase in vitro, modulates cAMP in live cells in a Rap1-dependent manner, and affects cAMP-dependent proliferation. Utilizing deletion and mutagenesis approaches, we mapped the interaction of CAP1-cyclase with CAP’s N-terminal domain involving critical leucine residues in the conserved RLE motifs and adenylyl cyclase’s conserved catalytic loops (e.g., C1a and/or C2a). When combined with a FRET-based cAMP sensor, CAP1 overexpression–knockdown strategies, and the use of constitutively active and negative regulators of Rap1, our studies highlight a critical role for CAP1-Rap1 in adenylyl cyclase regulation in live cells. Similarly, we show that CAP1 modulation significantly affected cAMP-mediated proliferation in an RLE motif–dependent manner. The combined study indicates that CAP1-cyclase-Rap1 represents a regulatory unit in cAMP dynamics and biology. Since Rap1 is an established downstream effector of cAMP, we advance the hypothesis that CAP1-cyclase-Rap1 represents a positive feedback loop that might be involved in cAMP microdomain establishment and localized signaling.

2002 ◽  
Vol 13 (3) ◽  
pp. 866-879 ◽  
Author(s):  
Ana Luna ◽  
Olga B. Matas ◽  
José Angel Martı́nez-Menárguez ◽  
Eugenia Mato ◽  
Juan M. Durán ◽  
...  

Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and noncoated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(ΔWA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP–dependent manner.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Kevin C Courtney ◽  
Karen YY Fung ◽  
Frederick R Maxfield ◽  
Gregory D Fairn ◽  
Xiaohui Zha

The plasma membrane in mammalian cells is rich in cholesterol, but how the cholesterol is partitioned between the two leaflets of the plasma membrane remains a matter of debate. Recently, Liu et al. used domain 4 (D4) of perfringolysin O as a cholesterol sensor to argue that cholesterol is mostly in the exofacial leaflet (<xref ref-type="bibr" rid="bib7">Liu et al., 2017</xref>). This conclusion was made by interpreting D4 binding in live cells using in vitro calibrations with liposomes. However, liposomes may be unfaithful in mimicking the plasma membrane, as we demonstrate here. Also, D4 binding is highly sensitive to the presence of cytosolic proteins. In addition, we find that a D4 variant, which requires >35 mol% cholesterol to bind to liposomes in vitro, does in fact bind to the cytoplasmic leaflet of the plasma membrane in a cholesterol-dependent manner. Thus, we believe, based on the current evidence, that it is unlikely that there is a significantly higher proportion of cholesterol in the exofacial leaflet of the plasma membrane compared to the cytosolic leaflet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin N. Nelson ◽  
Savannah G. Beakley ◽  
Sierra Posey ◽  
Brittney Conn ◽  
Emma Maritz ◽  
...  

AbstractCryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siming Qu ◽  
Li Jin ◽  
Hanfei Huang ◽  
Jie Lin ◽  
Weiwu Gao ◽  
...  

Abstract Background Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3 modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers. However, whether and how ALKBH5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived from Chinese people. Methods The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay, Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by CHIP-qPCR. The role of ALKBH5 in HBx mRNA N6-methyladenosine (m6A) modification was further evaluated by MeRIP-qPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells. Result ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly expressed ALKBH5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-dependent manner after HBV infection. The increased ALKBH5 protein catalyzes the m6A demethylation of HBx mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations between HBx and ALKBH5 in HBV-HCC tissues, and depletion of ALKBH5 significantly inhibits HBV-driven tumor cells’ growth and migration in vitro and in vivo. Conclusions HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis, and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.


2010 ◽  
Vol 432 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Joanne Durgan ◽  
Peter J. Parker

Fbw7 (F-box WD40 protein 7) is a major tumour suppressor, which mediates the degradation of several potent oncogenes. PKC (protein kinase C) comprises a serine/threonine kinase family that can promote transformation when dysregulated. In the present study, we investigated the relationship between Fbw7 and PKC. Multiple members of the PKC superfamily interact with the substrate-binding domain of Fbw7. However, we find no evidence for Fbw7-mediated degradation of PKC. Instead, we demonstrate that Fbw7 is a novel substrate for PKC. Two residues within the isoform-specific N-terminus of Fbw7α are phosphorylated in a PKC-dependent manner, both in vitro and in mammalian cells (Ser10 and Ser18). Mutational analyses reveal that phosphorylation of Fbw7α at Ser10 can regulate its nuclear localization. Cancer-associated mutations in nearby residues (K11R and the addition of a proline residue at position 16) influence Fbw7α localization in a comparable manner, suggesting that mislocalization of this protein may be of pathological significance. Together these results provide evidence for both physical and functional interactions between the PKC and Fbw7 families, and yield insights into the isoform-specific regulation of Fbw7α.


2009 ◽  
Vol 20 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Ulf R. Klein ◽  
Markus Haindl ◽  
Erich A. Nigg ◽  
Stefan Muller

The ubiquitin-like SUMO system controls cellular key functions, and several lines of evidence point to a critical role of SUMO for mitotic progression. However, in mammalian cells mitotic substrates of sumoylation and the regulatory components involved are not well defined. Here, we identify Borealin, a component of the chromosomal passenger complex (CPC), as a mitotic target of SUMO. The CPC, which additionally comprises INCENP, Survivin, and Aurora B, regulates key mitotic events, including chromosome congression, the spindle assembly checkpoint, and cytokinesis. We show that Borealin is preferentially modified by SUMO2/3 and demonstrate that the modification is dynamically regulated during mitotic progression, peaking in early mitosis. Intriguingly, the SUMO ligase RanBP2 interacts with the CPC, stimulates SUMO modification of Borealin in vitro, and is required for its modification in vivo. Moreover, the SUMO isopeptidase SENP3 is a specific interaction partner of Borealin and catalyzes the removal of SUMO2/3 from Borealin. These data thus delineate a mitotic SUMO2/3 conjugation–deconjugation cycle of Borealin and further assign a regulatory function of RanBP2 and SENP3 in the mitotic SUMO pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongtao Geng ◽  
Alexandros Pertsinidis

AbstractVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.


2017 ◽  
Vol 42 (6) ◽  
pp. 2552-2558 ◽  
Author(s):  
Jingsong Liu ◽  
Ying Zhong ◽  
Guoyong Liu ◽  
Xiaobai Zhang ◽  
Bofei Xiao ◽  
...  

Background/Aims: Transforming growth factor β 1 (TGFβ1) plays a critical role in the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs) during renal injury, a major cause of acute renal failure, renal fibrosis and obstructive nephropathy. However, the underlying molecular mechanisms remain ill-defined. Here, we addressed this question. Methods: Expression of TGFβ1, Snail, and phosphorylated Stat3 was examined by immunohistochemistry in the kidney after induction of unilateral ureteral obstruction (UUO) in mice. In vitro, primary TECs were purified by flow cytometry, and then challenged with TGFβ1 with/without presence of specific inhibitors for phosphorylation of SMAD3 or Stat3. Protein levels were determined by Western blotting. Results: We detected significant increases in Snail and phosphorylated Stat3, an activated form for Stat3, in the kidney after induction of UUO in mice. In vitro, TGFβ1-challenged primary TECs upregulated Snail, in a SMAD3/Stat3 dependent manner. Conclusion: Our study sheds light on the mechanism underlying the EMT of TECs after renal injury, and suggests Stat3 signaling as a promising innovative therapeutic target for prevention of renal fibrosis.


1997 ◽  
Vol 17 (12) ◽  
pp. 7268-7282 ◽  
Author(s):  
R Verona ◽  
K Moberg ◽  
S Estes ◽  
M Starz ◽  
J P Vernon ◽  
...  

E2F directs the cell cycle-dependent expression of genes that induce or regulate the cell division process. In mammalian cells, this transcriptional activity arises from the combined properties of multiple E2F-DP heterodimers. In this study, we show that the transcriptional potential of individual E2F species is dependent upon their nuclear localization. This is a constitutive property of E2F-1, -2, and -3, whereas the nuclear localization of E2F-4 is dependent upon its association with other nuclear factors. We previously showed that E2F-4 accounts for the majority of endogenous E2F species. We now show that the subcellular localization of E2F-4 is regulated in a cell cycle-dependent manner that results in the differential compartmentalization of the various E2F complexes. Consequently, in cycling cells, the majority of the p107-E2F, p130-E2F, and free E2F complexes remain in the cytoplasm. In contrast, almost all of the nuclear E2F activity is generated by pRB-E2F. This complex is present at high levels during G1 but disappears once the cells have passed the restriction point. Surprisingly, dissociation of this complex causes little increase in the levels of nuclear free E2F activity. This observation suggests that the repressive properties of the pRB-E2F complex play a critical role in establishing the temporal regulation of E2F-responsive genes. How the differential subcellular localization of pRB, p107, and p130 contributes to their different biological properties is also discussed.


2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


Sign in / Sign up

Export Citation Format

Share Document