scholarly journals Hydrodynamic shear dissipation and transmission in lipid bilayers

2021 ◽  
Vol 118 (21) ◽  
pp. e2100156118
Author(s):  
Guillermo J. Amador ◽  
Dennis van Dijk ◽  
Roland Kieffer ◽  
Marie-Eve Aubin-Tam ◽  
Daniel Tam

Vital biological processes, such as trafficking, sensing, and motility, are facilitated by cellular lipid membranes, which interact mechanically with surrounding fluids. Such lipid membranes are only a few nanometers thick and composed of a liquid crystalline structure known as the lipid bilayer. Here, we introduce an active, noncontact, two-point microrheology technique combining multiple optical tweezers probes with planar freestanding lipid bilayers accessible on both sides. We use the method to quantify both fluid slip close to the bilayer surface and transmission of fluid flow across the structure, and we use numerical simulations to determine the monolayer viscosity and the intermonolayer friction. We find that these physical properties are highly dependent on the molecular structure of the lipids in the bilayer. We compare ordered-phase with liquid disordered-phase lipid bilayers, and we find the ordered-phase bilayers to be 10 to 100 times more viscous but with 100 times less intermonolayer friction. When a local shear is applied by the optical tweezers, the ultralow intermonolayer friction results in full slip of the two leaflets relative to each other and as a consequence, no shear transmission across the membrane. Our study sheds light on the physical principles governing the transfer of shear forces by and through lipid membranes, which underpin cell behavior and homeostasis.

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1707 ◽  
Author(s):  
Mirza Wasif Baig ◽  
Marek Pederzoli ◽  
Piotr Jurkiewicz ◽  
Lukasz Cwiklik ◽  
Jiri Pittner

Fluidity of lipid membranes is known to play an important role in the functioning of living organisms. The fluorescent probe Laurdan embedded in a lipid membrane is typically used to assess the fluidity state of lipid bilayers by utilizing the sensitivity of Laurdan emission to the properties of its lipid environment. In particular, Laurdan fluorescence is sensitive to gel vs liquid–crystalline phases of lipids, which is demonstrated in different emission of the dye in these two phases. Still, the exact mechanism of the environment effects on Laurdan emission is not understood. Herein, we utilize dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) lipid bilayers, which at room temperature represent gel and liquid–crystalline phases, respectively. We simulate absorption and emission spectra of Laurdan in both DOPC and DPPC bilayers with quantum chemical and classical molecular dynamics methods. We demonstrate that Laurdan is incorporated in heterogeneous fashion in both DOPC and DPPC bilayers, and that its fluorescence depends on the details of this embedding.


2020 ◽  
Author(s):  
Pradyumn Sharma ◽  
Rajat Desikan ◽  
K. Ganapathy Ayappa

AbstractPhospholipids, which are an integral component of cell membranes, exhibit a rich variety of lamellar phases modulated by temperature and composition. Molecular dynamics (MD) simulations have greatly enhanced our understanding of phospholipid membranes by capturing experimentally observed phases and phase transitions at molecular resolution. However, the ripple (Pβ′) membrane phase, observed as an intermediate phase below the main gel-to-liquid crystalline transition with some lipids, has been challenging to capture with MD simulations, both at all-atom and coarse-grained resolution. Here, we systematically assess the ability of five coarse-grained MARTINI 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid force-field (FF) variants, parametrized to reproduce the DPPC gel and fluid phases, for their ability to capture the Pβ′ phase. Upon cooling from the fluid phase to below the phase transition temperature with smaller (380-lipid) and larger (> 2200-lipid) MARTINI and all-atom (CHARMM36 FF) DPPC lipid bilayers, we observed that smaller bilayers with both all-atom and MARTINI FFs sampled interdigitated Pβ′ and ripple-like states, respectively. However, while all-atom simulations of the larger DPPC membranes exhibited the formation of the Pβ′ phase, similar to previous studies, MARTINI membranes did not sample interdigitated ripple-like states at larger system sizes. We then demonstrated that the ripple-like states in smaller MARTINI membranes were kinetically-trapped structures caused by finite size effects rather than being representative of true Pβ′ phases. We showed that even a MARTINI FF variant that could capture the tilted Lβ′ gel phase, a prerequisite for stabilizing the Pβ′ phase, could not capture the rippled phase upon cooling. Our study reveals that the current MARTINI FFs may require specific re-parametrization of the interaction potentials to stabilize lipid interdigitation, a characteristic of the ripple phase.


Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


2021 ◽  
Vol 22 (15) ◽  
pp. 8350
Author(s):  
Naďa Labajová ◽  
Natalia Baranova ◽  
Miroslav Jurásek ◽  
Robert Vácha ◽  
Martin Loose ◽  
...  

DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 192
Author(s):  
Kinga Burdach ◽  
Dagmara Tymecka ◽  
Aneta Urban ◽  
Robert Lasek ◽  
Dariusz Bartosik ◽  
...  

The increasing resistance of bacteria to available antibiotics has stimulated the search for new antimicrobial compounds with less specific mechanisms of action. These include the ability to disrupt the structure of the cell membrane, which in turn leads to its damage. In this context, amphiphilic lipopeptides belong to the class of the compounds which may fulfill this requirement. In this paper, we describe two linear analogues of battacin with modified acyl chains to tune the balance between the hydrophilic and hydrophobic portion of lipopeptides. We demonstrate that both compounds display antimicrobial activity with the lowest values of minimum inhibitory concentrations found for Gram-positive pathogens. Therefore, their mechanism of action was evaluated on a molecular level using model lipid films mimicking the membrane of Gram-positive bacteria. The surface pressure measurements revealed that both lipopeptides show ability to bind and incorporate into the lipid monolayers, resulting in decreased ordering of lipids and membrane fluidization. Atomic force microscopy (AFM) imaging demonstrated that the exposure of the model bilayers to lipopeptides leads to a transition from the ordered gel phase to disordered liquid crystalline phase. This observation was confirmed by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) results, which revealed that lipopeptide action causes a substantial increase in the average tilt angle of lipid acyl chains with respect to the surface normal to compensate for lipopeptide insertion into the membrane. Moreover, the peptide moieties in both molecules do not adopt any well-defined secondary structure upon binding with the lipid membrane. It was also observed that a small difference in the structure of a lipophilic chain, altering the balance between hydrophobic and hydrophilic portion of the molecules, results in different insertion depth of the active compounds.


2021 ◽  
Vol 50 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Hannes Witt ◽  
Filip Savić ◽  
Sarah Verbeek ◽  
Jörn Dietz ◽  
Gesa Tarantola ◽  
...  

AbstractMembrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.


Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Amani Alghalayini ◽  
Alvaro Garcia ◽  
Thomas Berry ◽  
Charles Cranfield

This review identifies the ways in which tethered bilayer lipid membranes (tBLMs) can be used for the identification of the actions of antimicrobials against lipid bilayers. Much of the new research in this area has originated, or included researchers from, the southern hemisphere, Australia and New Zealand in particular. More and more, tBLMs are replacing liposome release assays, black lipid membranes and patch-clamp electrophysiological techniques because they use fewer reagents, are able to obtain results far more quickly and can provide a uniformity of responses with fewer artefacts. In this work, we describe how tBLM technology can and has been used to identify the actions of numerous antimicrobial agents.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 430 ◽  
Author(s):  
Anja Sadžak ◽  
Janez Mravljak ◽  
Nadica Maltar-Strmečki ◽  
Zoran Arsov ◽  
Goran Baranović ◽  
...  

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.


Sign in / Sign up

Export Citation Format

Share Document