scholarly journals Passive coupling of membrane tension and cell volume during active response of cells to osmosis

2021 ◽  
Vol 118 (47) ◽  
pp. e2103228118
Author(s):  
Chloé Roffay ◽  
Guillaume Molinard ◽  
Kyoohyun Kim ◽  
Marta Urbanska ◽  
Virginia Andrade ◽  
...  

During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR]), we investigated the coupling between tension and volume during these asymmetric recoveries. Caveolae depletion and pharmacological inhibition of ion transporters and channels, mTORCs, and the cytoskeleton all affected tension and volume responses. Treatments targeting mTORC2 and specific downstream effectors caused identical changes to both tension and volume responses, their coupling remaining the same. This supports that the coupling of tension and volume responses to osmotic shocks is primarily regulated by mTORC2.

2021 ◽  
Author(s):  
Chloé Roffay ◽  
Guillaume Molinard ◽  
Kyoohyun Kim ◽  
Victoria Barbarassa ◽  
Marta Urbanska ◽  
...  

ABSTRACTDuring osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as a quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase, quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. During these asymmetric recoveries, tension and volume remained coupled. Pharmacological disruption of the cytoskeleton and functional inhibition of ion channels and mTOR all affected tension and volume responses, proving that a passive mechanism is necessary and critical for the cell to adapt fast. The coupling between them was, nonetheless, maintained for a few exceptions suggesting that volume and tension regulations are independent from the regulation of their coupling.


2021 ◽  
Author(s):  
Larisa Venkova ◽  
Amit Singh Vishen ◽  
Sergio Lembo ◽  
Nishit Srivastava ◽  
Baptiste Duchamp ◽  
...  

Mechanics has been a central focus of physical biology in the past decade. In comparison, the osmotic and electric properties of cells are less understood. Here we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spread, migrate or are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechano-sensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.


1998 ◽  
Vol 527 ◽  
Author(s):  
M. Venkatesan ◽  
U.V. Varadaraju ◽  
K.V.S. Rama Rao

ABSTRACTThe interstitial carbides HoErFe15Ga2Cy (y=0,0.5,1.0,1.5,2.0) were synthesized by are melting technique and characterized by X-ray diffraction and magnetization measurements. The hexagonal Th2Ni17 type structure persisted in all compounds. Both the Curie temperature TC and unit cell volume v are found to increase monotonically with increasing carbon concentration. The unit cell volume increase of Ga substituted carbide HoErFe15Ga2C2.0 is around 6.1% compared to HoErFe17. The Curie temperature increase is mainly due to the strengthening of exchange interaction. The Ga substitution is found to not only help the formation of single phase but also enhance the uniaxial anisotropy.


PEDIATRICS ◽  
1972 ◽  
Vol 49 (3) ◽  
pp. 406-419 ◽  
Author(s):  
Saroj Saigal ◽  
Allison O'Neill ◽  
Yeldandi Surainder ◽  
Le-Beng Chua ◽  
Robert Usher

Placental transfusion has been compared in premature and full-term infants. Blood volume measurements showed that the 5-minute transfusion was similar in full-term and premature infants (47% and 50% increase in blood volume from birth). A larger proportion of the 5-minute transfusion occurred by 1 minute in full-term (76%) than in premature infants (56%). Placental transfusion, by increasing red cell volume, greatly enhanced the severity of neonatal hyperbilirubinemia. Bilirubin concentrations of 15 mg/100 ml developed in only 6% of premature infants when cord clamping was immediate, in 14% when cord clamping was delayed 1 minute, and in 38% after a 5-minute delay in cord clamping.


1959 ◽  
Vol 196 (2) ◽  
pp. 420-422 ◽  
Author(s):  
Julius J. Friedman

The circulating and tissue hematocrits of normal unanesthetized mice were determined by means of independent red cell and plasma volume measurements. The red cell volume-indicator which was used in this study was radioiron (Fe59) tagged red cells. The plasma volume data were derived by means of radioiodine (I131) labeled serum albumin and were reported earlier (Friedman, Proc. Soc. Exper. Biol. & Med. 88: 323, 1955). The hematocrits of the various tissues were found to be: for spleen 51.3, lung 47.9, muscle 49.9, liver 38.9, intestine, 32.2, skin 29.2 and kidney 24.0%. The total body hematocrit was 35.4% as compared to 48.4 for venous blood. All tissues, with the exception of spleen and lung, contained hematocrits which were lower than that of venous blood suggesting the presence of some mechanism within the various tissues which is capable of effectively separating plasma from red cells.


1994 ◽  
Vol 267 (3) ◽  
pp. C768-C775 ◽  
Author(s):  
C. Pena-Rasgado ◽  
K. D. McGruder ◽  
J. C. Summers ◽  
H. Rasgado-Flores

Isosmotic removal of extracellular Ca2+ (Cao) and changes in membrane potential (Vm) are frequently performed manipulations. Using isolated voltage-clamped barnacle muscle cells, we studied the effect of these manipulations on isosmotic cell volume. Replacing Cao by Mg2+ induced 1) verapamil-sensitive extracellular Na(+)-dependent membrane depolarization, 2) membrane depolarization-dependent cell volume reduction in cells whose sarcoplasmic reticulum (SR) was presumably loaded with Ca2+ [intracellular Ca2+ (Cai)-loaded cells], and 3) cell volume increase in cells whose SR was presumably depleted of Ca2+ (Cai-depleted cells) or in Cai-loaded cells whose Vm was held constant. Membrane depolarization induced 1) volume reduction in Cai-loaded cells or 2) verapamil-sensitive volume increase in Cai-depleted cells. This suggests tha, in Cai-loaded cells, membrane depolarization induces SR Ca2+ release, which in turn promotes volume reduction. Conversely, in Cai-depleted cells, the depolarization activates Na+ influx through a verapamil-sensitive pathway leading to the volume increase. This pathway is also revealed when Cao is removed in either Cai-depleted cells or in cells whose Vm is held constant.


1985 ◽  
Vol 248 (3) ◽  
pp. R293-R301 ◽  
Author(s):  
J. P. Hannon ◽  
C. A. Bossone ◽  
W. G. Rodkey

When estimated by the dilution of 51Cr-labeled red blood cells under nearly basal conditions, immature splenectomized pigs (n = 20) had a circulating red cell volume of 17.8 +/- 1.64 (SD) ml/kg. At an assumed body-to-large vessel hematocrit (BH:LH) ratio of 0.9, plasma volume was 49.6 +/- 3.12 ml/kg and blood volume 67.3 +/- 3.67 ml/kg. Sham-operated pigs (n = 20) had a circulating red cell volume of 16.2 +/- 1.39 ml/kg, a plasma volume of 51.1 +/- 3.42 ml/kg, and blood volume of 67.2 +/- 4.12 ml/kg. Kinetic analysis of early 51Cr loss from the circulating blood of the sham-operated pigs indicated a splenic red cell sequestration of 4.5 +/- 0.89 ml/kg and a t1/2 of 9.76 +/- 1.93 min for splenic red cell turnover. Epinephrine injection (n = 6) and physical restraint (n = 8) caused rapid mobilization of splenic red blood cells in sham-operated pigs. Volume estimates in splenectomized pigs (n = 7) based on simultaneous dilutions of 51Cr-labeled red blood cells and 125I-labeled bovine albumin gave circulating red cell, plasma, and blood volumes of 18.4 +/- 2.46, 60.7 +/- 4.01, and 79.0 +/- 3.51 ml/kg, respectively, and a BH:LH ratio of 0.756 +/- 0.029. The latter value may have reflected an overestimation of plasma volume by the 125I-labeled albumin procedure.


The Lancet ◽  
1934 ◽  
Vol 223 (5767) ◽  
pp. 513-517 ◽  
Author(s):  
JanetM. Vaughan ◽  
HelenM. Goddard

Sign in / Sign up

Export Citation Format

Share Document