scholarly journals Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift

2018 ◽  
Vol 293 (21) ◽  
pp. 8032-8047 ◽  
Author(s):  
Jane A. Armstrong ◽  
Nicole J. Cash ◽  
Yulin Ouyang ◽  
Jack C. Morton ◽  
Michael Chvanov ◽  
...  

Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1–10 μm), whereas higher levels (0.5–1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2. H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2. However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shengbin Huang ◽  
Bingbing Zheng ◽  
Xing Jin ◽  
Qihao Yu ◽  
Xiaorong Zhang ◽  
...  

Pathological stimuli, such as bacterial activity, dental bleaching, and nonpolymerized resin monomers, can cause death of dental pulp cells (DPCs) through oxidative stress- (OS-) induced mitochondrial dysfunction. However, the crucial molecular mechanisms that mediate such a phenomenon remain largely unknown. OS is characterized by the overproduction of reactive oxygen species (ROS), e.g., H2O2, O2−, and ⋅OH. Mitochondria are a major source of ROS and the principal attack target of ROS. Cyclophilin D (CypD), as the only crucial protein for mitochondrial permeability transition pore (mPTP) induction, facilitates the opening of mPTP and causes mitochondrial dysfunction, leading to cell death. In the present study, we hypothesized that CypD-mediated mitochondrial molecular pathways were closely involved in the process of OS-induced death of human DPCs (HDPCs). We tested the phenotypic and molecular changes of HDPCs in a well-established OS model—H2O2 treatment. We showed that H2O2 dramatically reduced the viability and increased the death of HDPCs in a time- and dose-dependent manner by performing MTT, flow cytometry, and TUNEL assays and quantifying the expression changes of Bax and Bcl-2 proteins. H2O2 also induced mitochondrial dysfunction, as reflected by the increased mitochondrial ROS, reduced ATP production, and activation of mPTP (decreased mitochondrial membrane potential and enhanced intracellular Ca2+ level). An antioxidant (N-acetyl-L-cysteine) effectively preserved mitochondrial function and significantly attenuated H2O2-induced cytotoxicity and death. Moreover, H2O2 treatment markedly upregulated the CypD protein level in HDPCs. Notably, genetic or pharmacological blockade of CypD significantly attenuated H2O2-induced mitochondrial dysfunction and cell death. These findings provided novel insights into the role of a CypD-dependent mitochondrial pathway in the H2O2-induced death in HDPCs, indicating that CypD may be a potential therapeutic target to prevent OS-mediated injury in dental pulp.


2009 ◽  
Vol 297 (6) ◽  
pp. G1163-G1171 ◽  
Author(s):  
Marco Siech ◽  
Zhengfei Zhou ◽  
Shaoxia Zhou ◽  
Bernd Bair ◽  
Andreas Alt ◽  
...  

Mechanisms leading to acute pancreatitis after a fat-enriched meal combined with excess alcohol are incompletely understood. We have studied the effects of alcohol and fat (VLDL) on pancreatic acinar cell (PAC) function, oxidative stress, and repair mechanisms by pancreatic stellate cells (PSC) leading to fibrogenesis. To do so, PAC (rat) were isolated and cultured up to 24 h. Ethanol and/or VLDL were added to PAC. We measured PAC function (amylase, lipase), injury (lactic dehydrogenase), apoptosis (TUNEL, Apo2.7, annexin V binding), oxidative stress, and lipid peroxidation (conjugated dienes, malondialdehyde, chemoluminescence); we also measured PSC proliferation (bromodeoxyuridine incorporation), matrix synthesis (immunofluorescence of collagens and fibronectin, fibronectin immunoassay), and fatty acids in PAC supernatants (gas chromatography). Within 6 h, cultured PAC degraded and hydrolyzed VLDL completely. VLDL alone (50 μg/ml) and in combination with alcohol (0.2, 0.5, and 1% vol/vol) induced PAC injury (LDL, amylase, and lipase release) within 2 h through generation of oxidative stress. Depending on the dose of VLDL and alcohol, apoptosis and/or necrosis were induced. Antioxidants (Trolox, Probucol) reduced the cytotoxic effect of alcohol and VLDL. Supernatants of alcohol/VLDL-treated PAC stimulated stellate cell proliferation and extracellular matrix synthesis. We concluded that, in the presence of lipoproteins, alcohol induces acinar cell injury. Our results provide a biochemical pathway for the clinical observation that a fat-enriched meal combined with excess alcohol consumption can induce acinar cell injury (acute pancreatitis) followed by repair mechanisms (proliferation and increased matrix synthesis in PSC).


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sudarsan Rajan ◽  
Santhanam Shanmughapriya ◽  
Dhanendra Tomar ◽  
Zhiwei Dong ◽  
Joseph Y Cheung ◽  
...  

Mitochondrial calcium ([Ca 2+ ] m ) is essential for cardiomyocyte viability, and aberration of [Ca 2+ ] m is known to elicit multiple cardiac stress conditions associated with ATP depletion, reactive oxygen species, and mitochondrial permeability transition pore opening, all of which can lead to metabolic stress and the loss of dysfunctional mitochondria by aberrant autophagy. Elucidating the regulatory role of m itochondrial c alcium u niporter (MCU)-mediated [Ca 2+ ] m in modulating cardiac mitochondrial bioenergetics and autophagy has high significance and clinical impact for many pathophysiological processes. [Ca 2+ ] m is exquisitely controlled by the inner mitochondrial membrane uniporter, transporters, regulators and exchangers including MCU, MCUR1, EMRE, MICU1, MICU2 and LETM1. Our recently published findings revealed that Mitochondrial Ca 2+ Uniporter Regulator 1 (MCUR1) serves as a scaffold factor for uniporter complex assembly. We found that deletion of MCUR1 impaired [Ca 2+ ] m uptake, mitochondrial Ca 2+ current ( I MCU ) and mitochondrial bioenergetics and is associated with increased autophagy. Our new findings indicate that the impairment of [Ca 2+ ] m uptake exacerbated autophagy following ischemia-reperfusion (I/R) injury. In support of our mouse model, human failing hearts show that MCUR1 protein levels are markedly decreased and autophagy markers are increased, demonstrating a crucial link between [Ca 2+ ] m uptake and autophagy during heart failure. Additionally, our results reveal that either oxidation or disruption of human MCU Cys-97 (in mouse Cys-96; gain-of-function MCU C96A mutant) produces a conformational change within the N terminal β-grasp fold of MCU which promotes higher-order MCU complex assembly and increased I MCU activity and mitochondrial ROS levels. The results of our studies using a novel cardiac-specific MCUR1-KO model and a constitutively active global MCU C96A KI mouse model (CRISPR-Cas9 genome edited) elucidate the regulatory role of [Ca 2+ ] m in cardiac bioenergetics and autophagy during oxidative stress and myocardial infarction. Thus, targeting assembly and the activity of MCU complex will offer a new potential therapeutic target in the treatment of cardiomyopathy and heart failure.


2019 ◽  
Vol 317 (3) ◽  
pp. C584-C599
Author(s):  
Kurt D. Marshall ◽  
Paula J. Klutho ◽  
Lihui Song ◽  
Maike Krenz ◽  
Christopher P. Baines

Opening of the mitochondrial permeability transition (MPT) pore leads to necrotic cell death. Excluding cyclophilin D (CypD), the makeup of the MPT pore remains conjecture. The purpose of these experiments was to identify novel MPT modulators by analyzing proteins that associate with CypD. We identified Fas-activated serine/threonine phosphoprotein kinase domain-containing protein 1 (FASTKD1) as a novel CypD interactor. Overexpression of FASTKD1 protected mouse embryonic fibroblasts (MEFs) against oxidative stress-induced reactive oxygen species (ROS) production and cell death, whereas depletion of FASTKD1 sensitized them. However, manipulation of FASTKD1 levels had no effect on MPT responsiveness, Ca2+-induced cell death, or antioxidant capacity. Moreover, elevated FASTKD1 levels still protected against oxidative stress in CypD-deficient MEFs. FASTKD1 overexpression decreased Complex-I-dependent respiration and ΔΨm in MEFs, effects that were abrogated in CypD-null cells. Additionally, overexpression of FASTKD1 in MEFs induced mitochondrial fragmentation independent of CypD, activation of Drp1, and inhibition of autophagy/mitophagy, whereas knockdown of FASTKD1 had the opposite effect. Manipulation of FASTKD1 expression also modified oxidative stress-induced caspase-3 cleavage yet did not alter apoptotic death. Finally, the effects of FASTKD1 overexpression on oxidative stress-induced cell death and mitochondrial morphology were recapitulated in cultured cardiac myocytes. Together, these data indicate that FASTKD1 supports mitochondrial homeostasis and plays a critical protective role against oxidant-induced death.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Maitinuer Maiwulanjiang ◽  
Kevin Y. Zhu ◽  
Jianping Chen ◽  
Abudureyimu Miernisha ◽  
Sherry L. Xu ◽  
...  

Song Bu Li decoction (SBL) is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia) and heart disorders (arrhythmia and palpitation). Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS) formation. The transcriptional activity of antioxidant response element (ARE), as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF-) induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.


2020 ◽  
Author(s):  
Elyne Backx ◽  
Elke Wauters ◽  
Jonathan Baldan ◽  
Mathias Van Bulck ◽  
Ellis Michiels ◽  
...  

ABSTRACTMaintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed in mouse since the availability of human cells is scarce.Here, we applied a non-genetic lineage tracing method in our culture model of human pancreatic exocrine cells that allowed cell-type specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized using in vitro and in vivo genetic loss-of-function experimental models.RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in ‘Pathways of cancer’ with prominence of the transcription factor MECOM (EVI-1) that was absent from duct cells. During mouse embryonic development, pre-acinar cells transiently expressed MECOM and MECOM was re-expressed in experimental in vivo models of acute and chronic pancreatitis in vivo, conditions in which acinar cells dedifferentiate. MECOM expression correlated with and was directly regulated by SOX9. MECOM loss-of-function in mouse acinar cells in vitro and in vivo impaired cell adhesion resulting in more prominent acinar cell death and suppressed acinar cell dedifferentiation by limiting ERK signaling.In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.


2018 ◽  
Author(s):  
Hadhemi Kaddour ◽  
Yosra Hamdi ◽  
David Vaudry ◽  
Jérôme Leprince ◽  
Hubert Vaudry ◽  
...  

AbstractOxidative stress, associated with various neurodegenerative diseases, induces imbalance in ROS generation, impairs cellular antioxidant defences and finally triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN is a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10−14 to 10−8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. Toxin-treated cells exhibited high level of ROS associated with a generation of H2O2 and O2°-and a reduction of both SOD and catalase activities. Co-treatment of astrocytes with low concentrations of ODN dose dependently blocked 6-OHDA-evoked ROS production and inhibition of antioxidant enzymes activities. Taken together, these data demonstrate that ODN is a potent glioprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3996-3996
Author(s):  
Xiaolei Wei ◽  
Yun Mai ◽  
Ru Feng ◽  
B. Hilda Ye

Abstract Diffuse large B cell lymphoma (DLBCL) is the most common lymphoid malignancy in the adult population and can be subdivided into two main subtypes, i.e. GCB-DLBCL and ABC-DLBCL. While both subtypes are derived from normal germinal center (GC) B cells, they differ in B cell maturation stage, transformation pathway, and clinical behavior. When treated with either the combination chemotherapy CHOP or the immuno-chemotherapy R-CHOP, the survival outcome of ABC-DLBCL patients is typically much worse than that of GCB-DLBCL patients. Although the molecular mechanisms underlying this survival disparity remain poorly understood, an attractive hypothesis is that there exist subtype-specific resistance mechanisms directed against the chemo-therapy drugs in the original CHOP formulation. In support of this notion, our previous study has revealed that Doxorubicin (Dox), the main cytotoxic ingredient in CHOP, has subtype-specific mechanisms of cytotoxicity in DLBCLs due to differences in its subcellular distribution pattern. In particular, Dox-induced cytotoxicity in ABC-DLBCLs is largely dependent on oxidative stress rather than DNA damage response. Based on these findings, we hypothesize that agents capable of disturbing the redox balance in ABC-DLBCL cells could potentiate the therapeutic activity of first line lymphoma therapy. As the major route of cystine uptake from extracellular space, the xCT cystine/glutamate antiporter controls the rate-limiting step for glutathione (GSH) synthesis in several types of cancer cells, including CLL. We focused the current study on xCT because its protein stability is known to be positively regulated by a splicing variant of CD44 and we have recently published that expression of CD44 and CD44V6 are poor prognosticators for DLBCL. Indeed, we found that surface CD44 is exclusively expressed in ABC-DLBCL (6/6) but not GCB-DLBCL (0/5) cell lines. In addition, the xCT proteins in two ABC-DLBCL cell lines, Riva and SuDHL2, are extraordinarily stable, with half-lives exceeding 24 hours. As such, transient transfection using siRNA oligos was ineffective in reducing the endogenous xCT protein in ABC-DLBCL cell lines. To circumvent this issue, we turned to a clinically approved anti-inflammatory drug, sulfasalazine (SASP), which is a validated xCT inhibitor in its intact form. When Riva and SuDHL2 cells were treated overnight with the IC50 dose of SASP, the endogenous GSH pool was drastically reduced, leading to significant increase in intracellular ROS, p38 and JNK activation, and progressive apoptosis. Unexpectedly, we found that Dox-treated cells had significantly elevated GSH levels, possibly the result of an antioxidant response to Dox-triggered ROS accumulation. This increase in GSH was completely suppressed when the IC25 dosage of SASP was included in the Dox treatment. As expected, SASP/Dox combination significantly enhanced Dox-triggered ROS accumulation and synergistically promoted cell death in Riva and SuDHL2 cells. Mechanistically, p38 activation and cell death induced by SASP/Dox combination could be markedly attenuated by pretreatment with glutathione monoethyl ester, demonstrating the critical role of oxidative stress. Furthermore, cytotoxicity triggered by SASP/Dox could also be suppressed by the p38 inhibitor, SB203580. We have developed stable cell lines expressing xCT shRNA to confirm the results obtained with SASP. In vivo interactions between SASP and Dox are also being evaluated in xenograft-based ABC-DLBCL models. In summary, we report here for the first time a critical role of xCT in sustaining in vivo GSH production in ABC-DLBCL cells. More importantly, pharmacologic inhibition of xCT function in ABC-DLBCL cells not only prevented Dox-induced endogenous GSH increase, but also potentiated Dox-induced ROS accumulation and cytotoxicity in a p38-dependent manner. With additional evidence from ongoing experiments, our study aims to provide a mechanistic basis for development of novel therapies that target either xCT or redox homeostasis to improve treatment outcomes for ABC-DLBCLs. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 443 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Ayano Fukuhara ◽  
Mao Yamada ◽  
Ko Fujimori ◽  
Yuya Miyamoto ◽  
Toshihide Kusumoto ◽  
...  

L-PGDS [lipocalin-type PGD (prostaglandin D) synthase] is a dual-functional protein, acting as a PGD2-producing enzyme and a lipid transporter. L-PGDS is a member of the lipocalin superfamily and can bind a wide variety of lipophilic molecules. In the present study we demonstrate the protective effect of L-PGDS on H2O2-induced apoptosis in neuroblastoma cell line SH-SY5Y. L-PGDS expression was increased in H2O2-treated neuronal cells, and the L-PGDS level was highly associated with H2O2-induced apoptosis, indicating that L-PGDS protected the neuronal cells against H2O2-mediated cell death. A cell viability assay revealed that L-PGDS protected against H2O2-induced cell death in a concentration-dependent manner. Furthermore, the titration of free thiols in H2O2-treated L-PGDS revealed that H2O2 reacted with the thiol of Cys65 of L-PGDS. The MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight)-MS spectrum of H2O2-treated L-PGDS showed a 32 Da increase in the mass relative to that of the untreated protein, showing that the thiol was oxidized to sulfinic acid. The binding affinities of oxidized L-PGDS for lipophilic molecules were comparable with those of untreated L-PGDS. Taken together, these results demonstrate that L-PGDS protected against neuronal cell death by scavenging reactive oxygen species without losing its ligand-binding function. The novel function of L-PGDS could be useful for the suppression of oxidative stress-mediated neurodegenerative diseases.


2009 ◽  
Vol 284 (26) ◽  
pp. 17488-17498 ◽  
Author(s):  
Baoan Ji ◽  
Sebastian Gaiser ◽  
Xueqing Chen ◽  
Stephen A. Ernst ◽  
Craig D. Logsdon

Sign in / Sign up

Export Citation Format

Share Document