scholarly journals A human cellular noncoding RNA activates the antiviral protein 2′–5′-oligoadenylate synthetase 1

2018 ◽  
Vol 293 (41) ◽  
pp. 16115-16124 ◽  
Author(s):  
Brenda M. Calderon ◽  
Graeme L. Conn

The 2′–5′-oligoadenylate synthetase (OAS) family of enzymes sense cytosolic dsRNA, a potent signal of viral infection. In response to dsRNA binding, OAS proteins synthesize the second messenger 2′–5′-linked oligoadenylate that activates the latent ribonuclease L (RNase L). RNase L–mediated degradation of viral and cellular RNAs effectively halts viral replication and further stimulates innate immune responses by inducing type I interferon. The OAS/RNase L pathway is therefore central in innate immune recognition and promotion of antiviral host responses. However, the potential for specific RNA sequences or structures to drive OAS1 activation and the molecular mechanisms by which they act are not currently fully understood. Moreover, the cellular regulators of OAS activity are not well defined. Here, we demonstrate that the human cellular noncoding RNA 886 (nc886) activates OAS1 both in vitro and in human A549 cells. We show that a unique structure present only in one of the two structural conformers adopted by nc886 drives potent OAS1 activation. In contrast, the conformer lacking this unique structure activated OAS1 only very weakly. We also found that formation of this OAS1-activating structural motif depends on the nucleotides in the apical-most loop of nc886 and the adjacent helix. These findings identify a cellular RNA capable of activating the OAS/RNase L pathway in human cells and illustrate the importance of structural elements, and their context, in potentiating OAS1 activity.

2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Jillian N. Whelan ◽  
Yize Li ◽  
Robert H. Silverman ◽  
Susan R. Weiss

SUMMARYThere is currently no knowledge of how the emerging human pathogen Zika virus (ZIKV) interacts with the antiviral endoribonuclease L (RNase L) pathway during infection. Since activation of RNase L during infection typically limits virus production dramatically, we used CRISPR-Cas9 gene editing technology to knockout (KO) targeted host genes involved in the RNase L pathway to evaluate the effects of RNase L on ZIKV infection in human A549 cells. RNase L was activated in response to ZIKV infection, which degraded ZIKV genomic RNA. Surprisingly, despite viral genome reduction, RNase L activity did not reduce ZIKV infectious titers. In contrast, both the flavivirus dengue virus and the alphavirus Sindbis virus replicated to significantly higher titers in RNase L KO cells compared to wild-type (WT) cells. Using MAVS/RNase L double KO cells, we demonstrated that the absence of increased ZIKV production in RNase L KO cells was not due to compensation by enhanced type I interferon transcripts to thus inhibit virus production. Finally, when synthetic double-stranded RNA was detected by OAS3 to induce RNase L antiviral activity prior to ZIKV infection, we observed reduced ZIKV replication factory formation, as well as a 42-fold reduction in virus yield in WT but not RNase L KO cells. This study proposes that ZIKV evades RNase L antiviral activity by generating a viral genome reservoir protected from RNase L cleavage during early infection, allowing for sufficient virus production before RNase L activation is detectable.IMPORTANCEWith the onset of the 2015 ZIKV outbreak, ZIKV pathogenesis has been of extreme global public health interest, and a better understanding of interactions with the host would provide insight into molecular mechanisms driving the severe neurological outcomes of ZIKV disease. Here is the initial report on the relationship between ZIKV and the host oligoadenylate synthetase-RNase L (OAS-RNase L) system, a potent antiviral pathway effective at restricting replication of diverse viruses. Our study elucidated a unique mechanism whereby ZIKV production is impervious to antiviral RNase L activity, through a mechanism of viral RNA protection that is not mimicked during infection with numerous other RNase L-activating viruses, thus identifying a distinct replication strategy potentially important for ZIKV pathogenesis.


2021 ◽  
Vol 6 (60) ◽  
pp. eabf9564
Author(s):  
Thomas Magg ◽  
Tsubasa Okano ◽  
Lars M. Koenig ◽  
Daniel F.R. Boehmer ◽  
Samantha L. Schwartz ◽  
...  

Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon–induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2′-5′-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell–derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L–mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.


2013 ◽  
Vol 94 (6) ◽  
pp. 1151-1160 ◽  
Author(s):  
Gavan Holloway ◽  
Barbara S. Coulson

Rotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication. Here we review the current literature describing the detection of rotavirus infection by pattern recognition receptors within host cells, the subsequent molecular mechanisms leading to IFN and cytokine production, and the processes leading to reduced rotavirus replication and the development of protective immunity. Rotavirus countermeasures against innate responses, and their roles in modulating rotavirus replication in mice, also are discussed. By linking these different aspects of innate immunity, we provide a comprehensive overview of the host’s first line of defence against rotavirus infection. Understanding these processes is expected to be of benefit in improving strategies to combat rotavirus disease.


2018 ◽  
Vol 72 (1) ◽  
pp. 447-478 ◽  
Author(s):  
Xiaojun Tan ◽  
Lijun Sun ◽  
Jueqi Chen ◽  
Zhijian J. Chen

Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Xi Wang ◽  
Zhe Cheng ◽  
Lingling Dai ◽  
Tianci Jiang ◽  
Liuqun Jia ◽  
...  

ABSTRACT Long noncoding RNAs (lncRNAs) are involved in various human diseases. Recently, H19 was reported to be upregulated in fibrotic rat lung and play a stimulative role in bleomycin (BLM)-induced pulmonary fibrosis in mice. However, its expression in human fibrotic lung tissues and mechanism of action remain unclear. Here, our observations showed that H19 expression was significantly upregulated and that of microRNA 140 (miR-140) was markedly reduced in pulmonary fibrotic tissues from idiopathic pulmonary fibrosis (IPF) patients and transforming growth factor β1 (TGF-β1)-induced HBE and A549 cells. Moreover, the expression of H19 was negatively correlated with the expression of miR-140 in IPF tissues. H19 knockdown attenuated TGF-β1-induced pulmonary fibrosis in vitro. Furthermore, animal experiments showed that H19 knockdown attenuated BLM-induced pulmonary fibrosis in mice. The study of molecular mechanisms showed that H19 functioned via reduction of miR-140 expression by binding to miR-140. The increase of miR-140 inhibited TGF-β1-induced pulmonary fibrosis, and H19 upregulation diminished the inhibitory effects of miR-140 on TGF-β1-induced pulmonary fibrosis, which was involved in the TGF-β/Smad3 pathway. Taken together, our findings showed that H19 knockdown attenuated pulmonary fibrosis via the regulatory network of lncRNA H19–miR-140–TGF-β/Smad3 signaling, and H19 and miR-140 might represent therapeutic targets and early diagnostic and prognostic biomarkers for patients with pulmonary fibrosis.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 821-834 ◽  
Author(s):  
Keqin Yan ◽  
Dingqing Feng ◽  
Jing Liang ◽  
Qing Wang ◽  
Lin Deng ◽  
...  

Viral infections of the ovary may perturb ovarian functions. However, the mechanisms underlying innate immune responses in the ovary are poorly understood. The present study demonstrates that cytosolic viral DNA sensor signaling initiates the innate immune response in mouse ovarian granulosa cells and affects endocrine function. The cytosolic DNA sensors p204 and cGAS and their common signaling adaptor stimulator of interferon (IFN) genes (STING) were constitutively expressed in granulosa cells. Transfection with VACV70, a synthetic vaccinia virus (VACV) DNA analog, induced the expression of type I interferons (IFNA/B) and major inflammatory cytokines (TNFA and IL6) through IRF3 and NF-κB activation respectively. Moreover, several IFN-inducible antiviral proteins, including 2′,5′-oligoadenylate synthetase, IFN-stimulating gene 15 and Mx GTPase 1, were also induced by VACV70 transfection. The innate immune responses in granulosa cells were significantly reduced by the transfection of specific small-interfering RNAs targeting p204, cGas or Sting. Notably, the VACV70-triggered innate immune responses affected steroidogenesis in vivo and in vitro. The data presented in this study describe the mechanism underlying ovarian immune responses to viral infection.


2003 ◽  
Vol 77 (23) ◽  
pp. 12914-12920 ◽  
Author(s):  
Christine Rogez ◽  
Marc Martin ◽  
Nathalie Dereuddre-Bosquet ◽  
Jacques Martal ◽  
Dominique Dormont ◽  
...  

ABSTRACT Tau interferon (IFN-τ) is a noncytotoxic type I IFN responsible for maternal recognition of the fetus in ruminants. IFN-τ inhibits human immunodeficiency virus (HIV) replication more strongly than human IFN-α, particularly in human monocyte-derived macrophages. In this study performed in human macrophages, IFN-τ efficiently inhibited the early steps of the biological cycle of HIV, decreasing intracellular HIV RNA and inhibiting the initiation of the reverse transcription of viral RNA into proviral DNA. Two mechanisms induced by IFN-τ treatment in macrophages may account for this inhibition: (i) the synthesis of the cellular antiviral factors such as 2′,5′-oligoadenylate synthetase/RNase L and MxA protein and (ii) an increased production of MIP-1α, MIP-1β, and RANTES, which are natural ligands of CCR5, the principal coreceptor of HIV on macrophages. Our results suggest that IFN-τ induces the same antiviral pathways in macrophages as other type I IFNs but without associated toxicity.


2016 ◽  
Vol 90 (8) ◽  
pp. 3810-3818 ◽  
Author(s):  
Bjoern Meyer ◽  
Hinh Ly

Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.


2021 ◽  
Author(s):  
Olatunbosun Arowolo ◽  
Leonid Pobezinsky ◽  
Alexander Suvorov

Abstract Severe outcomes of COVID-19 are associated with pathological response of the immune system to the SARS-CoV-2 infection. Emerging evidence suggests that interaction may exist between COVID-19 pathogenesis and a broad range of xenobiotics, resulting in significant increases in death rates in highly exposed populations. Therefore, a better understanding of the molecular basis of the interaction between SARS-CoV-2 infection and chemical exposures may open opportunities for better preventive and therapeutic interventions. We attempted to gain mechanistic knowledge on the interaction between SARS-CoV-2 infection and chemical exposures using in-silico approach, where we identified genes and molecular pathways affected by both chemical exposures and SARS-CoV-2 in human immune cells (T-cells, B-cells, NK-cells, dendritic, and monocyte cells). Our findings demonstrate for the first time that overlapping molecular mechanisms affected by a broad range of chemical exposures and COVID-19 are linked to IFN type I/II signaling pathways and the process of antigen presentation. Based on our data, we also predict that exposures to various chemical compounds will predominantly impact the population of monocytes during the response against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document