The genetic architecture and breeding towards cold tolerance in maize: review.

Author(s):  
Hai-xiao Dong ◽  
Zhao Li ◽  
Guang-hui Hu ◽  
Ya-ping Yuan ◽  
Zhi-wu Zhang

Abstract This chapter reviews the global adaptation of maize, the effect of cold stress, existing cold-tolerant or cold-sensitive maize varieties or mutants, research on linkage analysis, and genome-wide association studies and gene expression profiling in maize cold response. In addition, the potential usage of genomic selection to accelerate the breeding process is explored. The objectives are to integrate knowledge for the benefit of geneticists to understand the genetic architecture of cold tolerance and for breeders to select 'hyper-tolerant' maize varieties adapted to broader and changeable environments.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2018 ◽  
Author(s):  
Zhou Shaoqun ◽  
Karl A. Kremling ◽  
Bandillo Nonoy ◽  
Richter Annett ◽  
Ying K. Zhang ◽  
...  

One Sentence SummaryHPLC-MS metabolite profiling of maize seedlings, in combination with genome-wide association studies, identifies numerous quantitative trait loci that influence the accumulation of foliar metabolites.AbstractCultivated maize (Zea mays) retains much of the genetic and metabolic diversity of its wild ancestors. Non-targeted HPLC-MS metabolomics using a diverse panel of 264 maize inbred lines identified a bimodal distribution in the prevalence of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated primarily by flavonoid abundance, maize varieties (stiff-stalk, non-stiff-stalk, tropical, sweet corn, and popcorn) were differentiated predominantly by benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often metabolically related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS dataset constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.


2021 ◽  
Vol 28 ◽  
Author(s):  
Vinutha Kanuganahalli Somegowda ◽  
Laavanya Rayaprolu ◽  
Abhishek Rathore ◽  
Santosh Pandurang Deshpande ◽  
Rajeev Gupta

: The main focus of this review is to discuss the current status of the use of GWAS for fodder quality and biofuel owing to its similarity of traits. Sorghum is a potential multipurpose crop, popularly cultivated for various uses as food, feed fodder, and biomass for ethanol. Production of a huge quantity of biomass and genetic variation for complex sugars are the main motivation not only to use sorghum as fodder for livestock nutritionists but also a potential candidate for biofuel generation. Few studies have been reported on the knowledge transfer that can be used from the development of biofuel technologies to complement improved fodder quality and vice versa. With recent advances in genotyping technologies, GWAS became one of the primary tools used to identify the genes/genomic regions associated with the phenotype. These modern tools and technologies accelerate the genomic assisted breeding process to enhance the rate of genetic gains. Hence, this mini-review focuses on GWAS studies on genetic architecture and dissection of traits underpinning fodder quality and biofuel traits and their limited comparison with other related model crop species.


2019 ◽  
Vol 20 (12) ◽  
pp. 3041 ◽  
Author(s):  
Li ◽  
Xu ◽  
Yang ◽  
Zhao

Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein and oil content are two valuable quality traits controlled by multiple genes in soybean. In this study, the restricted two-stage multi-locus genome-wide association analysis (RTM-GWAS) procedure was performed to dissect the genetic architecture of seed protein and oil content in a diverse panel of 279 soybean accessions from the Yangtze and Huaihe River Valleys in China. We identified 26 quantitative trait loci (QTLs) for seed protein content and 23 for seed oil content, including five associated with both traits. Among these, 39 QTLs corresponded to previously reported QTLs, whereas 10 loci were novel. As reported previously, the QTL on chromosome 20 was associated with both seed protein and oil content. This QTL exhibited opposing effects on these traits and contributed the most to phenotype variation. From the detected QTLs, 55 and 51 candidate genes were identified for seed protein and oil content, respectively. Among these genes, eight may be promising candidate genes for improving soybean nutritional quality. These results will facilitate marker-assisted selective breeding for soybean protein and oil content traits.


2020 ◽  
Author(s):  
Olivia C Leavy ◽  
Shwu-Fan Ma ◽  
Philip L Molyneaux ◽  
Toby M Maher ◽  
Justin M Oldham ◽  
...  

Genome-wide association studies have identified 14 genetic loci associated with susceptibility to idiopathic pulmonary fibrosis (IPF), a devastating lung disease with poor prognosis. Of these, the variant with the strongest association, rs35705950, is located in the promoter region of the MUC5B gene and has a risk allele (T) frequency of 30-35% in IPF cases. Here we present estimates of the proportion of disease liability explained by each of the 14 IPF risk variants as well as estimates of the proportion of cases that can be attributed to each variant. We estimate that rs35705950 explains 5.9-9.4% of disease liability, which is much lower than previously reported estimates. Of every 100,000 individuals with the rs35705950_GG genotype we estimate 30 will have IPF, whereas for every 100,000 individuals with the rs35705950_GT genotype 152 will have IPF. Quantifying the impact of genetic risk factors on disease liability improves our understanding of the underlying genetic architecture of IPF and provides insight into the impact of genetic factors in risk prediction modelling.


Sign in / Sign up

Export Citation Format

Share Document