scholarly journals The utilization of chopped and pelleted lucerne (Medicago sativa) by growing lambs

1979 ◽  
Vol 41 (2) ◽  
pp. 297-310 ◽  
Author(s):  
D. J. Thomson ◽  
S. B. Cammell

1. The efficiency of utilization of the dietary energy and nitrogen contained in a dried lucerne (Medicago sativa cv. Chartainvilliers) given either chopped (CL) or ground (1.96 mm screen) and pelleted (PL), was measured in a comparative slaughter experiment. Growing lambs were given equal amounts of digestible energy in the chopped or pelleted form at each at each of the three planes of nutrition for a period of 100 d.2. The initial energy, fat and protein content of both the carcass and the total body of the test lambs was estimated from regression equations between fasted (18 h) live weight and these components, derived from a group of twenty-three comparable lambs. The final energy, fat and protein content of the test lambs was determined directly by chemical analyses.3. The metabolizable energy (ME) content of the diets was derived at each plane of nutrition from measured faecal and urinary losses and estimated methane losses. The depression in ME content with grinding and pelleting the dried lucerne was small (CL 8.69 MJ/kg dry matter (DM), PL 8.42 MJ/kg DM).4. The efficiency of utilization of the ME of the dried lucerne for growth and fattening was higher (P < 0.01) when given in the ground pelleted form (0.533), than in the chopped form (0.284). The net energy value of the PL (3.5 MJ/kg DM) was higher than that of CL (2.2 MJ/kg DM).5. Thus lambs fed on PL grew faster and had a higher caracass weight gain, carcass protein and fat retention than lambs fed on CL. The composition of the carcass was not altered by the physical processing treatment.6. Digestion studies with these same CL and PL diets had shown that grinding and pelleting depressed digestion in the forestomachs and increased digestion in the small intestine compared with the chopped form. The increased efficiency of utilization of the gross energy and ME and the higher net energy value of PL was attributed primarily to a change in the site of digestion within the alimentary tract. Associated with this change was a higher value for absorbed amino acids : absorbed energy and an increased apparent absorption of methionine for lambs fed on PL. The difference in the energy costs of eating and ruminating the CL and PL was small.

1982 ◽  
Vol 98 (2) ◽  
pp. 395-404 ◽  
Author(s):  
G. D. Tudor ◽  
D. J. Minson

SUMMARYThe net energy values for growth and fattening of two artificially dried tropical grasses-, pangola (Digitaria decumbens) and setaria (S. sphacelata var. sericea cv. Nandi), of similar estimated metabolizable energy content (8·07 and 7·96 MJ/kg D.M.) were determined with cattle using a slaughter technique. Growing cattle with a mean initial weight of 175 kg were given equal quantities of dry matter of the two grasses at each of three planes of nutrition above maintenance for a period of 152 days.The initial energy, fat and protein content of the total body of the 24 test animals was estimated from regressions relating fasted live weight to theśe components, derived from 12 similar cattle slaughtered at the beginning of the feeding period. The final energy, fat and protein content of the test animals was determined directly by chemical analysis. The metabolizable energy (ME) content of the grasses was estimated from the level of digestible energy (DE) determined with eight cattle, assuming that ME = 0·815 DE.The cattle fed pangola gained more live weight, empty-body weight, fat, protein and energy than animals fed similar quantities of setaria. The net energy value for growth and fattening (NEf) was determined using regressions relating energy retention to the quantity of dry matter eaten. NEf in MJ/kg dry matter was 2·27 for pangola and 1·31 for setaria.Efficiency of utilization of ME for growth and fattening (kf) was.27·7% for pangola and 16·9% for setaria. These values for tropical grasses are lower than any values reported for temperate pasture species. Thus the lower efficiency of utilization of ME may cause the lower production of cattle which graze tropical grasses.It was concluded that as the kf values of different tropical grasses are not constant, kf values should be measured on a wider range of tropical grasses so that this factor can be taken into account when evaluating grasses in animal production systems.


2002 ◽  
Vol 87 (2) ◽  
pp. 131-139 ◽  
Author(s):  
S. Sinaud ◽  
C. Montaurier ◽  
D. Wils ◽  
J. Vernet ◽  
M. Brandolini ◽  
...  

The metabolizable energy content of low-digestible carbohydrates does not correspond with their true energy value. The aim of the present study was to determine the tolerance and effects of two polyols on digestion and energy expenditure in healthy men, as well as their digestible, metabolizable and net energy values. Nine healthy men were fed for 32 d periods a maintenance diet supplemented either with dextrose, Lycasin®HBC (Roquette Frères, Lestrem, France), or the hydrogenated polysaccharide fraction of Lycasin®HBC, at a level of 100 g DM/d in six equal doses per d according to a 3×3 Latin square design with three repetitions. After a 20 d progressive adaptation period, food intake was determined for 12 d using the duplicate meal method and faeces and urine were collected for 10 d for further analyses. Subjects spent 36 h in one of two open-circuit whole-body calorimeters with measurements during the last 24 h. Ingestion of the polyols did not cause severe digestive disorders, except excessive gas emission, and flatulence and gurgling in some subjects. The polyols induced significant increases in wet (+45 and +66 % respectively, P<0·01) and dry (+53 and +75 % respectively, P<0·002) stool weight, resulting in a 2 % decrease in dietary energy digestibility (P<0·001). They resulted also in significant increases in sleeping (+4·1 %, P<0·03) and daily energy expenditure (+2·7 and +2·9 % respectively, P<0·02) compared with dextrose ingestion. The apparent energy digestibility of the two polyols was 0·82 and 0·79 respectively, their metabolizable energy value averaged 14·1 kJ/g DM, and their net energy value averaged 10·8 kJ/g DM, that is, 35 % less than those of sucrose and starch.


1955 ◽  
Vol 46 (3) ◽  
pp. 292-306 ◽  
Author(s):  
K. L. Blaxter ◽  
N. McC. Graham

1. Experiments with two sheep are described in which energy retention was measured at different levels of food intake and the losses of energy incidental to food consumption measured.2. Attainment of reasonably stable values for energy losses occurred after 72 hr. of fast. On realimentation stable values were not attained until 10 days had elapsed. Methane production was resumed relatively slowly.3. The accuracy of the mean estimates of energy retention was high, and duplicate determinations of metabolism after lapses of time gave excellent agreement.4. It is shown that the assumption of linearity of the relationship between energy retention and food intake expressed as metabolizable energy is incorrect.5. An exponential relationship between energy retention, and food intake was employed to describe the data. This resulted in a reduction of the residual sum of squares compared with a linear regression.6. It is shown that net energy values (starch equivalents) measured by Kellner, Armsby and Forbes have entirely different meanings, and that the correction employed by Wood reflects these facts.7. The exponential relationship has been generalized to take into account body-size variation and has been examined as far as it affects concepts of efficiency of food utilization, and of nutritional plane.8. Nutritional plane has been rigidly defined in such a way that it is independent of body size and of food quality, and it enables net energy values to be predicted at other planes of nutrition once the net energy value at one nutritional plane is known.9. A simple and rational scheme for the feeding of livestock to take into account the decline in net energy value (starch equivalent) with nutritional plane has been devised.10. Analysis of the energy losses in relation to nutritional plane shows that losses of energy in faeces, urine and as heat per unit food ingested tend to rise with increasing nutritional plane. Methane losses fall. These results suggest that the prediction of net energy values from measurement of energy losses in faeces, or from estimates of metabolizable energy, can give rise to extremely unreliable results.11. The results have been discussed in relation to previous work in this field. It is pointed out that the exponential relationships employed are a convenient method of describing a very complex situation and facilitating its analysis.


1998 ◽  
Vol 80 (4) ◽  
pp. 343-352 ◽  
Author(s):  
C. Castiglia-Delavaud ◽  
E. Verdier ◽  
J. M. Besle ◽  
J. Vernet ◽  
Y. Boirie ◽  
...  

The energy value of NSP has been expressed as their metabolizable energy (ME) content. The aim of the present study was to determine whether differences in ME and net energy (NE) contents were similar for insoluble and soluble NSP. Nine healthy young men were offered three diets according to a Latin-square design (3 × 3) with three repetitions: diet C (control), diet B (control + 50 g sugarbeet fibre/d) and diet I (control + 50 g commercial inulin/d). After a 16 d adaptation period to NSP isolate, food intake was controlled (duplicate meal method) and faeces and urine were collected for 8 d. A period of 60 h was devoted to measurement of energy expenditure (EE) by whole-body indirect calorimetry. NSP-isolate ingestion induced significant increases in the number of defecations and stool weight resulting from increases in water, DM and microbial mass excretion. After deduction of microbial N, differences in faecal N excretion between diets were not significantly different. Urinary N excretion was slightly decreased by sugarbeet fibre or commercial inulin ingestion but the N balances for the diets were not significantly different. Diet energy, N and lipid apparent digestibilities decreased by only 1–2 %. Commercial inulin was entirely fermented and fermentability of sugarbeet fibre averaged 0.886 (sd 0.117). Sugarbeet fibre and commercial inulin ME values averaged 10.7 (sd 1.2) and 13.0(sd 2.3) kJ/g DM respectively. NSP-isolate ingestion caused significant (sugarbeet) and nonsignificant (inulin) increases in daily EE. The maintenance NE contents of sugarbeet fibre and inulin averaged 5.0 (sd 5.0) and 11.9 (sd 1.3)kJ/g DM respectively. Differences in maintenance NE contents of NSP isolates were much greater than differences in ME values.


1958 ◽  
Vol 195 (3) ◽  
pp. 654-658 ◽  
Author(s):  
F. W. Hill ◽  
L. B. Carew ◽  
A. van Tienhoven

Increased fat production in diethylstilbestrol-treated chicks was found to be due primarily to increased energy consumption and to a lesser extent to preferential synthesis of fat at the expense of protein tissue. This was shown in experiments comparing normal and estrogen-treated male chicks with respect to gains in live weight, fat and protein at two planes of nutrition, and the yield of metabolizable and productive (net) energy which they obtained from the diet. It was found that the fattening effect could not be due to increased digestibility, increased net energy yield from absorbed nutrients, or lowered heat production. Under the influence of estrogen, total tissue gain expressed in Calories was increased, and was composed of greater fat gain and lower protein gain. Tissue energy gains were a linear function of metabolizable energy consumption. This relationship predicted equal tissue energy gains under pair-feeding conditions, which was confirmed experimentally.


1982 ◽  
Vol 99 (1) ◽  
pp. 207-208 ◽  
Author(s):  
K. W. Moir

SUMMARYIn two grasses of low net energy value for growth and fattening of cattle, digestible cell-wall values were close to 40% of forage organic matter (OM), similar to the expected value for grass. A value of 14% of forage OM for apparently undigested cellular contents in both grasses was just outside the range of values for grass. The data supported previous evidence that total cell wall is the only value that can be used at present to define grass in terms of its digestible dry matter.


1983 ◽  
Vol 100 (3) ◽  
pp. 717-722
Author(s):  
J. B. Moran

SUMMARYIndonesian Ongole and swamp buffalo bulls that had previously been given 0, 1·2, 2·4, 3·6 or 4·8 kg/head/day rice bran plus ad libitum elephant grass were slaughtered after 161 days feeding. Abdominal depot fat, full and empty reticulo-rumen and cold carcass weights were recorded. Various carcass variables were measured and the 9–10–11 rib joints were dissected into bone, muscle and fat. Carcass gross energy was calculated from rib-fat content using previously determined regression equations. Feed efficiency was expressed in terms of the ratios of live-weight gain or carcass-energy accretion to metabolizable energy available for growth.Increasing supplementation with rice bran resulted in larger abdominal fat depots, higher dressing percentages, increased carcass fatness (and hence carcass gross energy) and improved rib muscle to bone ratios. Carcass conformation was unaffected by dietary treatment. When feed efficiency was expressed per unit live-weight gain, there was a decrease with increasing rice-bran feeding. Feed efficiency, expressed per unit of carcass energy accretion, improved with rice-bran supplementation and was generally higher in buffalo than in Ongole bulls. Dietary and species differences in feed efficiency could be primarily explained by the differential energy cost of deposition of, and the availability of energy from, carcass protein and lipid.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 171-172 ◽  
Author(s):  
Tofuko A Woyengo

Abstract Carinata (Brasicca carinata) is an oilseed crop of brassica family that is grown for production of oil for biofuel industry. Expeller-pressed carinata cake (EPCAR), a co-product from carinata seed oil extraction plants, is available for livestock feeding. However, nutritive value of EPCAR for pigs has not been reported. Objective of this study was to determine standardized ileal digestibility (SID) of amino acids (AA) and net energy value of EPCAR for growing pigs. Eight ileal-cannulated barrows (initial BW = 33 kg) were fed 3 diets in a replicated 3 × 3 Latin square design with 2 added columns to give 8 replicates/diet. The diets were cornstarch-based, containing expeller-pressed canola cake (EPCAN) or EPCAR as sole protein source, and N-free. The EPCAN was included in the study for comparison because it is derived from canola, which is the most widely used crop of Brassica family for oil production. Digestibility of AA in feedstuffs was determined by the direct method. Energy digestibility in EPCAN and EPCAR was determined by difference from the N-free diet. On DM basis, EPCAN and EPCAR contained 39.6 and 50.2% CP, 20.7 and 26.8% NDF, 16.0 and 0.88% ether extract, 2.32 and 1.82% lysine, 0.74 and 0.96% methionine, 1.63 and 1.89% threonine, and 0.50 and 0.64% tryptophan, respectively. The EPCAN compared with EPCAR, had greater (PPP = 0.078) in SID of threonine. The EPCAN had greater (P < 0.05) net energy value than EPCAN (2,082 vs. 1,576 kcal/kg DM). In conclusion, EPCAR lower energy value than EPCAN. However, EPCAR had greater SID of most AA than EPCAN; therefore, EPCAR can serve as alternative oilseed co-product feedstuff for pigs.


1963 ◽  
Vol 5 (1) ◽  
pp. 27-42 ◽  
Author(s):  
K. L. Blaxter ◽  
R. S. Wilson

SUMMARY1. The energy value of three hays cut at three stages of maturity was. measured by calorimetric methods and, in addition, the amounts of the hays consumed voluntarily by sheep were measured. Voluntary intake was alsa measured when 200, 500, 800 and 1,200 g. of pelleted concentrates were given.2. The metabolisable energy values of the three hays measured at the-maintenance level were 2·45, 2·26 and 2·16 kcal./g. for cuts 1, 2 and 3-respectively (cut 1 being the earliest). The net energy values for fat production were 0·96, 0·85 and 0·68 kcal./g. respectively.3. The apparent digestibility of the hays fell with increasing intake, but supplementation with concentrates increased their apparent digestibility.4. The voluntary intake of the hays given as the sole food was 70, 62 and 57 g./kg. W0·73 for the three cuts, respectively. When concentrates were given in increasing amounts, the intake of cuts 2 and 3 increased to maxima of 65 g. and 64 g./kg. W0·73 respectively and thereafter declined. With cut 1, intake of hay declined even with the smallest intake of concentrates. Voluntary intake of the hays was maximal when the protein content of the whole ration was 8·5%.5. When no supplement was given the digested energy per sheep per day supplied by cut 1 was 64% greater than that supplied by cut 3. When 800 g. concentrates were given, however, the ration including the early cut of hay provided only 2% more energy than that including the late cut.6. It is shown that if hay were given as the sole food cut 3, which produced 57% more weight of crop per acre, would provide 38% more metabolisable energy/acre and 11% more net energy (starch equivalent)/acre than would cut 1. The late cut would also enable 92% more sheep to be kept feeding to maximal appetite on an acre of produce. However, the total live-weight gain per acre would be only 25% of that obtained with thefirstcut.7. Comparable calculations have been made for the experiments in which concentrates were given. It is shown that here too optimal times of cutting can only be assessed in terms of estimates of animal production.


Sign in / Sign up

Export Citation Format

Share Document