scholarly journals The optimal amino acid supplementation of barley for the growing pig

1979 ◽  
Vol 41 (2) ◽  
pp. 321-331 ◽  
Author(s):  
M. F. Fuller ◽  
R. M. Livingstone ◽  
Barbara A. Baird

1. In five experiments, involving 142 female pigs weighing on average 33 kg, estimates were made of the amounts of essential amino acids which minimized urinary N excretion when diets with barley as the only source of protein were given at the rate of 120 g/kg0.75per d.2. With additions of lysine (4.0 g/kg diet) and threonine (1.2 g/kg diet) to barley urinary N excretion decreased from 0.91 to 0.36 g/kg0.75per d, corresponding to an increase in biological value (BV) from 0.51 to 0.86.3. With these additions of lysine and threonine, there were no responses to additions of tryptophan, methionine or isoleucine, or to further additions of lysine or threonine, but addition of histidine significantly reduced N excretion.4. No optimal addition of histidine could be determined; the mean rate of N excretion after addition of histidine (not less than 0.3 g/kg diet) was 0.27 g/kg0.75per d, corresponding to a BV of 0.93.5. There was a variation between pigs from different litters in their responses to added histidine. Those with low rates of N excretion on the unsupplemented diet did not respond to additions of histidine, but those with high rates did.6. It is concluded that additions of only three amino acids can greatly improve the nutritive value of barley protein for the growing pig and that the amino acid composition of the supplemented protein closely approaches the ideal; it is also similar to whole-body tissue protein.

2019 ◽  
Vol 110 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Paolo Tessari

ABSTRACT Background Essential amino acids (EAAs) are key factors in determining dietary protein quality. Their RDAs have been estimated. However, although nonessential amino acids (NEAAs) are utilized for protein synthesis too, no estimates of their usage for body protein replenishment have been proposed so far. Objective The aim of this study was to provide minimum, approximate estimates of NEAA usage for body protein replenishment/conservation in humans. Methods A correlation between the pattern of both EAAs and NEAAs in body proteins, and their usage, was assumed. In order to reconstruct an “average” amino acid pattern/composition of total body proteins (as grams of amino acid per gram of protein), published data of relevant human organs/tissues (skeletal muscle, liver, kidney, gut, and collagen, making up ∼74% of total proteins) were retrieved. The (unknown) amino acid composition of residual proteins (∼26% of total proteins) was assumed to be the same as for the sum of the aforementioned organs excluding collagen. Using international EAA RDA values, an average ratio of EAA RDA to the calculated whole-body EAA composition was derived. This ratio was then used to back-calculate NEAA usage for protein replenishment. The data were calculated also using estimated organ/tissue amino acid turnover. Results The individual ratios of World Health Organization/Food and Agriculture Organization/United Nations University RDA to EAA content ranged between 1.35 (phenylalanine + tyrosine) and 3.68 (leucine), with a mean ± SD value of 2.72 ± 0.81. In a reference 70-kg subject, calculated NEAA usage for body protein replenishment ranged from 0.73 g/d for asparagine to 3.61 g/d for proline. Use of amino acid turnover data yielded similar results. Total NEAA usage for body protein replenishment was ∼19 g/d (45% of total NEAA intake), whereas ∼24 g/d was used for other routes. Conclusion This method may provide indirect minimum estimates of the usage of NEAAs for body protein replacement in humans.


Author(s):  
M.F. Fuller ◽  
R. McWilliam ◽  
T.C. Wang

The optimal balance of amino acids in the diet of the growing pig was estimated by ARC (1981) on the basis of a number of disparate studies augmented by data on the amino acid composition of the whole body on the premise that the amino acids incorporated into accreted body proteins are the major determinant of requirements and that this pattern is not distorted by inequalities in the utilisation of individual amino acids. In an accompanying paper (Wang & Fuller, paper no. 91) an optimal pattern was derived by direct experiment which was shown to be utilised better than that described by ARC (1981). That pattern, however, which related to one particular rate of nitrogen input and the particular rate of protein accretion which that input supported, includes two components, a requirement for maintenance and a requirement for protein accretion. There is clear evidence from studies with rats and chicks that the optimal pattern of amino acids for maintenance and growth are quite different and so the optimal pattern for any particular rate of growth will depend on the relative contributions of the two components. The purpose of this experiment was to estimate both.


Author(s):  
T. C. Wang ◽  
M. F. Fuller

An animal's rate of protein accretion (or nitrogen retention) is determined by the most deficient (or first limiting) amino acid in the diet, in a perfectly balanced (or ideal) protein all essential amino acids and the sum of the non-essential amino acids are equally limiting. If a dietary protein had any amino acids in excess of the ideal pattern, then the removal of any of the excess should not affect nitrogen retention. This principle was used to determine the ideal dietary amino acid pattern for growing pigs.Three nitrogen balance trials were carried out with a total of 64 gilts of weight from 30 to 55 kg. Casein and a mixture of amino acids were used in the semi-purified diets. The animals were given the diets at the rate of 93 g/kg BW0.75/d in three equal meals mixed with 0.3 L water. The feeding times were 08.30, 12.30 and 17.30. All pigs received their experimental diets for 7 days, made up of 3 days preliminary and a 4-day collection, except that the preliminary period before the first collection in the first period was 7 days. Before the first collection bladder catheters were introduced.


1997 ◽  
Vol 272 (4) ◽  
pp. E592-E599 ◽  
Author(s):  
B. B. Poindexter ◽  
C. A. Karn ◽  
J. A. Ahlrichs ◽  
J. Wang ◽  
C. A. Leitch ◽  
...  

To determine how increased amino acid availability alters rates of whole body proteolysis and the irreversible catabolism of the essential amino acids leucine and phenylalanine throughout the neonatal period, leucine and phenylalanine kinetics were measured under basal conditions and in response to intravenous amino acids in two separate groups of healthy, full-term newborns (at 3 days and 3 wk of age). The endogenous rates of appearance of leucine and phenylalanine (reflecting proteolysis) were suppressed equally in both groups and in a dose-dependent fashion (by approximately 10% with 1.2 g x kg(-1) x day(-1) and by approximately 20% with 2.4 g x kg(-1) x day(-1)) in response to intravenous amino acid delivery. Insulin concentrations remained unchanged from basal values during amino acid administration. The irreversible catabolism of leucine and phenylalanine increased in a stepwise fashion in response to intravenous amino acids; again, no differences were observed between the two groups. This study clearly demonstrates that the capacity to acutely increase rates of leucine oxidation and phenylalanine hydroxylation is fully present early in the neonatal period in normal newborns. Furthermore, these data suggest that amino acid availability is a primary regulator of proteolysis in normal newborns throughout the neonatal period.


2020 ◽  
Vol 78 (Supplement_3) ◽  
pp. 79-85
Author(s):  
Kenji Nagao ◽  
Takeshi Kimura

Abstract This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.


1971 ◽  
Vol 11 (53) ◽  
pp. 619 ◽  
Author(s):  
W Turner ◽  
GG Payne

High protein wheat was the sole cereal in 20 and 25 per cent crude protein broiler starter diets. On the. 25 per cent protein diet, performance was maximized without amino acid supplementation. Using high protein wheat in 20 per cent protein diets, growth rate was improved by l-lysine supplementation of 0.3 per cent. However, this growth rate was not at a maximum level. Some other dietary factor was necessary, and this did not appear to be essential amino acids, singly or in combination.


1982 ◽  
Vol 48 (3) ◽  
pp. 519-526 ◽  
Author(s):  
J. R. Mercer ◽  
E. L. Miller

1. The effect of supplementing barley diets with urea (U), extracted decorticated groundnut meal (GNM) or Peruvian fish meal (PFM) on plasma free amino acid concentrations in sheep have been examined and the first limiting amino acid has been indicated by measuring the changes in the concentration of the plasma essential amino acids (PEAA) during a rumen infusion of a volatile fatty acid (VFA) mixture.2. Three wethers fitted with rumen and re-entrant duodenal cannulas were given isonitrogenous, isoenergetic diets containing (g/kg dry matter (DM)) U 20, GNM 106 or PFM 78, the crude protein (nitrogen × 6.25) contents being 139, 145 and 148 respectively. The sheep were fed hourly, the mean daily dm intake being 0.634 kg.3. Plasma concentrations of valine, threonine, lysine, isoleucine and leucine were linearly related to their concentrations in duodenal digesta.4. A VFA mixture was infused into the rumen for 6 h to supply (mmol/min) acetate 1.47, propionate 0.22 and n-butyrate 0.27. Blood samples were taken 6 h before, during and 12 h after the end of the infusion.5. The concentration of all PEAA decreased relative to the pre-infusion and post-infusion controls but there were no significant differences between diets.6. The mean decreases in concentration averaged over all three diets showed that the decrease in concentration of methionine (41.5%) was far greater than for any other essential amino acid suggesting that under these conditions methionine was the first limiting amino acid.


1974 ◽  
Vol 31 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. K. Said ◽  
D. M. Hegsted ◽  
K. C. Hayes

1. Adult rats were fed on diets free of either lysine, methionine, threonine or protein. The threonine- and protein-deficient animals lost weight at approximately the same rate, about 100 g in 14 weeks, at which time several were moribund. In contrast, lysine-deficient animals lost only about 30 g in 14 weeks and had lost only 46 g after 22 weeks, when they were killed. Methionine-deficient animals showed an intermediate response. Losses in weight of several tissues – kidney, heart and two muscles – were related to, but not necessarily proportional to, the loss of body-weight. Liver weights relative to body-weights were large in lysine- and threonine-deficient animals and smallest in methionine-deficient animals.2. Adult rats were fed on diets containing zero, a moderate amount (about twice the estimated minimal requirement) or an excess (about four times the estimated requirement) of lysine or threonine in all combinations (3 × 3 design). Analysis of variance of the body-weights, tissue weights and tissue nitrogen contents indicated, in general, a significant effect of each amino acid, as expected, but also, in most instances, a significant interaction. Plasma concentrations of lysine and threonine were affected by the intakes of the respective amino acids, but plasma lysine concentrations were also affected by the threonine intake.3. Liver histology also suggested significant interactions between the two amino acids. Animals given no lysine but moderate amounts of threonine developed severely fatty livers; next most severely affected were animals receiving excess of both amino acids. Threonine deficiency, in the presence or absence of lysine, produced moderately fatty livers similar to those seen in protein-deficient animals.4. Since animals have varying ability to conserve body nitrogen when they are fed on diets limiting in different essential amino acids, measurements of biological value (BV) and net protein utilization by conventional methods, over a short period of time, over-estimate nutritive value relative to amino acid score and probably over-estimate the true nutritive value of poor-quality proteins, particularly those limiting in lysine. If so, this is a serious error, since it leads to underestimates of the protein requirements if BV is used. The fact that certain tissues, particularly the liver, do not necessarily lose nitrogen in proportion to total body nitrogen and may show specific pathological effects depending on the limiting amino acid or the proportions of amino acids in the diet also indicates that general measures of nitrogen economy may not be sufficiently discriminating tests of the nutritive value of proteins.


2012 ◽  
Vol 108 (S2) ◽  
pp. S333-S336 ◽  
Author(s):  
Gertjan Schaafsma

PDCAAS is a widely used assay for evaluating protein quality. It is a chemical score, which is derived from the ratio between the first limiting amino acid in a test protein and the corresponding amino acid in a reference amino acid pattern and corrected for true faecal N digestibility. Chemical scores exceeding 100 % are truncated to 100 %. The advantages of the PDCAAS are its simplicity and direct relationship to human protein requirements. The limitations are as follows: the reference pattern is based on the minimum amino acid requirements for tissue growth and maintenance and does not necessarily reflect the optimum intake. Truncated PDCAAS of high-quality proteins do not give any information about the power of these proteins to compensate, as a supplement, for low levels of dietary essential amino acids in low-quality proteins. It is likely that faecal N digestibility does not take into account the loss from the colon of indispensable amino acids that were not absorbed in the ileum. Anti-nutritional factors, such as lectins and trypsin inhibitors, in several plant protein sources can cause heightened endogenous losses of amino acids, an issue which is particularly relevant in animal feedstuffs. The assumption that amino acid supplementation can completely restore biological efficiency of the protein source is incorrect since the kinetics of digestion and absorption between supplemented free amino acids and amino acids present in dietary proteins, are different.


1996 ◽  
Vol 76 (2) ◽  
pp. 231-248 ◽  
Author(s):  
G. E. Lobley ◽  
P. J. M. Weijs ◽  
A. Connell ◽  
A. G. Calder ◽  
D. S. Brown ◽  
...  

Changes in splanchnic energy and N metabolism were studied in sheep, prepared with vascular catheters across the portal-drained viscera (PDV) and the Liver, and maintained on supramaintenance intakes of either grass or grass + barley pellets. The animals were challenged, on both diets, with 4 d intra- mesenteric vein infusions of NH4CI (25 µmol/min) plus NH4HCO3(at either 0 or 125 µmol/min). On the final day of each treatment the natural abundance NH4Cl was replaced with15NH4Cl over a 10 h infusion while over the same period [l-13C]leucine was infused via a jugular vein. Measurements were made of blood flow plus mass transfers of NH3, urea, free amino acids and O2, across the PDV and liver. Enrichments of [14N15N]urea and [15N15N]urea plus [15N]glutamine, aspartate and glutamate were also monitored. Whole-body urea flux was determined by infusion of [14C]urea. At the end of the study the animals were infused for 3 h with15NH4CI, killed and liver samples assayed for intracellular free amino acid enrichments and concentrations. Blood flows across the splanchnic region were unaffected by either diet or level of ammonium salt infusion. At the lower ammonium salt infusion there was a trend for greater absorption of NH3across the PDV (P<0·10) with grass + barley than with the grass diet, while removal of urea was unaltered. At the higher ammonium salt infusions there was a significantly greater appearance of NH, across the PDV and this exceeded the extra infused. Urea-N removal, however, was also elevated and by more than that required to account for the additional NH3. The PDV contributed 19–28% to whole-body O2consumption and the liver 23–32%. Hepatic extraction of absorbed NH3was complete on all treatments and systemic pH remained constant. The fractions of urea-N apparently derived from NH3, were similar on the grass (0·59–0·64) and grass + barley (0·64–0·67) diets. Hepatic production of urea agreed well with urea flux measurements. Between the two levels of ammonium salt infusion and within diets the additional NH3removed across the PDV was accounted for by the increased urea-N production. The [14N15N]: [15N15N] ratio of the urea produced was 97:3, while the enrichment of hepatic intracellular free aspartate was lower than that of [14N15N]urea. Glutamine enrichments were 0·23–0·37 those of [14N15N]urea, indicating a minor role for those hepatocytes (probably perivenous) which contain glutamine synthetase (EC6.3.1.2). Leucine kinetics, either for the whole body or splanchnic tissues, were not different between diets or level of ammonium salt infusion, except for oxidation which was less on the grassfbarley ration. Amino acid concentrations were lower on the grass + barley diet but net PDV absorptions were similar. The pattern of essential amino acids absorbed into the PDV showed good agreement with the published composition of mixed rumen microbial protein. Fractional disappearances of absorbed free essential amino acids across the liver varied from 0·4 (branched chains) to near unity (histidine, phenylalanine)


Sign in / Sign up

Export Citation Format

Share Document