scholarly journals Effects of preweaning nutritional deprivation on basal metabolism and thermoregulatory thermogenesis in the rat

1986 ◽  
Vol 56 (3) ◽  
pp. 615-623 ◽  
Author(s):  
D. V. Muralidhara ◽  
P. S. Shetty

1. Nutritional deprivation was induced preweaning in Wistar rats by increasing the litter size to sixteen, while paired litters with only five pups served as controls. The nutritionally deprived pups were rehabilitated after weaning by ad lib. access to an adequate diet.2. The body-weights and body lengths were significantly lower in the nutritionally deprived group and significant differences persisted even after 9 weeks of rehabilitation.3. The body temperature of the nutritionally deprived animals was significantly lower than that of their paired controls, both before and following nutritional rehabilitation, except for a short period after weaning when the nutritionally deprived animals were initially given the diet ad lib.4. The resting oxygen consumption of the nutritionally deprived animals was comparable to that of the controls when corrected for metabolic body size, both before and after weaning. Noradrenaline-stimulated increase in 02 consumption (non-shivering thermogenesis; NST) was reduced by 50% at weaning in the nutritionally deprived animals and returned to levels comparable to those of controls within a short period of rehabilitation.5. The decrease in NST capacity seen in the nutritionally deprived animals was associated with an inability to thermoregulate when exposed to cold (5°), resulting in death. Cold-induced thermogenesis (CIT) also reappeared soon after nutritional rehabilitation.6. Reduction in metabolic rate, NST and CIT seen in the animals nutritionally deprived preweaning was short-lived and disappeared soon after nutritional rehabilitation. Rapid reversal of these physiological changes indicates that they do not confer any long-term benefit or change in metabolic efficiency and are unlike the changes in body size and growth which do not completely recover following nutritional rehabilitation.

2020 ◽  
Vol 54 (5) ◽  
pp. 15-22
Author(s):  
I.M. Larina ◽  
◽  
D.N. Kashirina ◽  
K.S. Kireev ◽  
A.I. Grigoriev ◽  
...  

We performed the first ever comparative analysis of modifications in the proteome, ionogram and some other blood plasma biochemical indices of 18 male cosmonauts (44 ± 6 years of age) before and after maiden or repeated long-term missions to the Russian segment of the International space station (ISS RS). Levels of proteins, substrates and ions as well as chemical components were measured using the LC-MS-based proteomics and routine biochemical techniques. A total of 256 to 281 indices were investigated with the methods of descriptive statistic, regression analysis, and access to bioinformatics resources. It was shown that blood indices recovery from the maiden and repeated missions reflects changes in the body systems and goes at a various speed. The results of measurements made prior to launch and on day 7 after landing are dependent on the number of missions. The bioinformatics techniques showed that after maiden missions both the mediator proteins of alkaline phosphatase (AP) and blood proteins with reliably changing concentrations are associated with the bio-processes including stress, metabolism and DNA reparation, apoptosis, catabolism and proteolysis. During early re-adaptation from repeated missions the AP level was affected by bone remodeling, phosphorylation, angiogenesis and coagulation cascade suggesting a distinct and urgent trigger of the processes of bone structure and mineralization.


2021 ◽  
Vol 8 ◽  
Author(s):  
Franziska Grundler ◽  
Gilles-Eric Séralini ◽  
Robin Mesnage ◽  
Vincent Peynet ◽  
Françoise Wilhelmi de Toledo

Background: Dietary exposure to environmental pollutants in humans is an important public health concern. While long-term fasting interrupts the dietary exposure to these substances, fat mobilization as an energy source may also release bioaccumulated substances. This was, to our knowledge, only investigated in obese people decades ago. This study explored the effects of 10-days fasting on the excretion of heavy metals and glyphosate.Methods: Urinary levels of arsenic, chromium, cobalt, lead, nickel, mercury and glyphosate were measured before and after 10 fasting days in 109 healthy subjects. Additionally, hair analysis was done before and ten weeks after fasting in 22 subjects.Results: Fasting caused a decrease in body weight, and in urinary arsenic (by 72%) and nickel (by 15%) concentrations. A decrease in lead hair concentrations (by 30%) was documented. Urinary mercury levels were unchanged for chromium, cobalt and glyphosate, which were undetectable in most of the subjects. Additionally, fatigue, sleep disorders, headache and hunger were reduced. Body discomfort symptoms diminished four weeks after food reintroduction.Conclusions: The results of this study provide the first insights into the changes in heavy metal excretion caused by long-term fasting. Further studies focusing on the kinetics of efflux between different compartments of the body are needed.Clinical Trial Registration:https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00016657, identifier: DRKS00016657.


2020 ◽  
Author(s):  
Regine Zopf ◽  
Veronika Kosourikhina ◽  
Kevin R. Brooks ◽  
Vince Polito ◽  
Ian Stephen

Estimating the size of bodies is crucial for interactions with physical and social environments. Body size perception is malleable and can be altered using visual adaptation paradigms. However, it is unclear whether such visual adaptation effects also transfer to other modalities and influence, for example, the perception of tactile distances. In this study we employed a visual adaptation paradigm. Participants were exposed to images of expanded or contracted versions of self- or other-identity bodies. Before and after this adaptation they were asked to manipulate the width of body images to appear as “normal” as possible. We replicated an effect of visual adaptation, such that the body size selected as most “normal” was larger after exposure to expanded and thinner after exposure to contracted adaptation stimuli. In contrast, we did not find evidence that this adaptation effect transfers to distance estimates for paired tactile stimuli delivered to the abdomen. A Bayesian analysis showed that our data provide moderate evidence that there is no effect of visual body size adaptation on the estimation of spatial parameters in a tactile task. This suggests that visual body size adaptation effects do not transfer to somatosensory body size representations.


2019 ◽  
Vol 24 (9) ◽  
pp. 1579-1591
Author(s):  
Jie Su ◽  
Min Liu ◽  
Zhen-Shi Fu ◽  
An-Di Zhu ◽  
Jian Ping Zhang

Prey are very important for the mass rearing of natural enemies and can affect the efficiency and quality of natural enemy products. Locomotion is important in dispersal of predatory mites on plants, and such activity is affected by body size and prey availability. The study evaluates the effects of prey (alternative prey: Tyrophagus putrescentiae Schrank and natural prey: Tetranychus turkestani Ugarov & Nikolskii) on the body size, locomotion and dispersal of the predatory mite Neoseiulus bicaudus Wainstein. When fed the alternative prey, the body size and locomotion of N. bicaudus were significantly lower than when fed the natural prey. However, the dispersal of N. bicaudus fed the two prey types was similar. The results suggest that long-term feeding on alternative prey could decrease the body size and locomotion of N. bicaudus. Nevertheless, the negative effects of alternative prey did not appear to affect the dispersal of N. bicaudus. The likely reason is that the type of prey does not affect the ability of the predatory mite to locate spider mites. In other words, when it fed alternative prey, N. bicaudus could still successfully disperse and locate spider mite-infested plants in the same way as when fed the natural prey.


Author(s):  
Na Ma ◽  
Ping Liu ◽  
Chao Chen ◽  
Aili Zhang ◽  
Lisa X. Xu

Tissue hypoxia is a common and important feature of rapidly growing malignant tumors and their metastases. Tumor cells mainly depend on energy production thru anaerobic glycolysis rather than aerobic oxidative phosphorylation in mitochondria [1]. Intervening the tumor metabolic process via thermal energy infusion is worthy attempting. And hyperthermia, mildly elevated local temperature above the body temperature, is one of such kind. Previously, after being heated for a short period of time, tumor glucose and lactate level increased and ATP level decreased, which suggested energy metabolism was modified following hyperthermia through increased ATP hydrolysis, intensified glycolysis and impaired oxidative phosphorylation [2]. Many researchers designed experiments to determine thermal dose in hyperthermia [3], but few focused on the relationship between tumor and energy, especially for a long-term local hyperthermia treatment. One clinical trial indicated the effective long-term hyperthermo-therapy for maintaining performance status, symptomatic improvement, and prolongation of survival time in patients with peritoneal dissemination [4].


1974 ◽  
Vol 31 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. K. Said ◽  
D. M. Hegsted ◽  
K. C. Hayes

1. Adult rats were fed on diets free of either lysine, methionine, threonine or protein. The threonine- and protein-deficient animals lost weight at approximately the same rate, about 100 g in 14 weeks, at which time several were moribund. In contrast, lysine-deficient animals lost only about 30 g in 14 weeks and had lost only 46 g after 22 weeks, when they were killed. Methionine-deficient animals showed an intermediate response. Losses in weight of several tissues – kidney, heart and two muscles – were related to, but not necessarily proportional to, the loss of body-weight. Liver weights relative to body-weights were large in lysine- and threonine-deficient animals and smallest in methionine-deficient animals.2. Adult rats were fed on diets containing zero, a moderate amount (about twice the estimated minimal requirement) or an excess (about four times the estimated requirement) of lysine or threonine in all combinations (3 × 3 design). Analysis of variance of the body-weights, tissue weights and tissue nitrogen contents indicated, in general, a significant effect of each amino acid, as expected, but also, in most instances, a significant interaction. Plasma concentrations of lysine and threonine were affected by the intakes of the respective amino acids, but plasma lysine concentrations were also affected by the threonine intake.3. Liver histology also suggested significant interactions between the two amino acids. Animals given no lysine but moderate amounts of threonine developed severely fatty livers; next most severely affected were animals receiving excess of both amino acids. Threonine deficiency, in the presence or absence of lysine, produced moderately fatty livers similar to those seen in protein-deficient animals.4. Since animals have varying ability to conserve body nitrogen when they are fed on diets limiting in different essential amino acids, measurements of biological value (BV) and net protein utilization by conventional methods, over a short period of time, over-estimate nutritive value relative to amino acid score and probably over-estimate the true nutritive value of poor-quality proteins, particularly those limiting in lysine. If so, this is a serious error, since it leads to underestimates of the protein requirements if BV is used. The fact that certain tissues, particularly the liver, do not necessarily lose nitrogen in proportion to total body nitrogen and may show specific pathological effects depending on the limiting amino acid or the proportions of amino acids in the diet also indicates that general measures of nitrogen economy may not be sufficiently discriminating tests of the nutritive value of proteins.


ARCTIC ◽  
2015 ◽  
Vol 68 (4) ◽  
pp. 472 ◽  
Author(s):  
Erica J. Newton ◽  
Kenneth F. Abraham ◽  
James A. Schaefer ◽  
Bruce A. Pond ◽  
Glen S. Brown ◽  
...  

Understanding the factors driving changes in species distributions is fundamental to conservation, but for wide-ranging species this is often complicated by the need for broad-scale observations across space and time. In the last three decades, the location of summer concentrations of migratory caribou (Rangifer tarandus) in southern Hudson Bay (SHB), Canada, has shifted south and east as much as 500 km. We used long-term data (1987 – 2011) to test two hypotheses that could explain the distribution shift: forage depletion and anthropogenic disturbance. Over time and space, we compared the body size of live-captured adult female caribou, dietary quality from fecal nitrogen in July, the location of VHF- and GPS-collared female caribou in July, distribution of all-terrain vehicle (ATV) tracks and caribou tracks in August, and the proximity of collared caribou to sections of the coast with higher ATV activity in spring and summer. The forage depletion hypothesis was supported by greater body size and dietary quality in caribou of the eastern portion of SHB than in western SHB animals in 2009 – 11. The anthropogenic disturbance hypothesis was supported by the negative correlation of the distributions of ATV tracks and caribou tracks on the coast in 2010 and the fact that caribou avoided areas with ATV activity by 10 – 14 km. In 1987, collared caribou were observed largely along the coast in western SHB in mid-July, while in 2009 – 11, they were inland in western SHB and along the coast in eastern SHB. While these locations demonstrate a substantial change in summer distri­bution over three decades, we were unable to differentiate between forage depletion and anthropogenic disturbance as a single causal factor of the distribution shift.


2021 ◽  
Vol 26 (6) ◽  
pp. 1052-1070
Author(s):  
Bing Liu ◽  
Xin Wang ◽  
Le Song ◽  
Jingna Liu

In this paper, we investigate the effects of pollution on the body size of prey about a predator–prey evolutionary model with a continuous phenotypic trait in a pulsed pollution discharge environment. Firstly, an eco-evolutionary predator–prey model incorporating the rapid evolution is formulated to investigate the effects of rapid evolution on the population density and the body size of prey by applying the quantitative trait evolutionary theory. The results show that rapid evolution can increase the density of prey and avoid population extinction, and with the worsening of pollution, the evolutionary traits becomes smaller gradually. Next, by employing the adaptive dynamic theory, a long-term evolutionary model is formulated to evaluate the effects of long-term evolution on the population dynamics and the effects of pollution on the body size of prey. The invasion fitness function is given, which reflects whether the mutant can invade successfully or not. Considering the trade-off between the intrinsic growth rate and the evolutionary trait, the critical function analysis method is used to investigate the dynamics of such slow evolutionary system. The results of theoretical analysis and numerical simulations conclude that pollution affects the evolutionary traits and evolutionary dynamics. The worsening of the pollution leads to a smaller body size of prey due to natural selection, while the opposite is more likely to generate evolutionary branching.


Sign in / Sign up

Export Citation Format

Share Document