Surface carbohydrates of Eudiplozoon nipponicum pre- and post-fusion

2004 ◽  
Vol 78 (1) ◽  
pp. 63-68 ◽  
Author(s):  
I. Schabussova ◽  
B. Koubková ◽  
M. Gelnar ◽  
M. Schabuss ◽  
P. Horák

AbstractThe development of the monogenean Diplozoon (Nordmann, 1832) (Diplozoidae) necessitates fusion of two larval stages (diporpae) into one double organism. How diporpae find, distinguish and contact each other is unclear, nor is the nature of the stimuli responsible for the dedifferentiation of cells and the formation of new tissues at the site of somatic fusion. Previous studies have implied a role for carbohydrates and glycoproteins in the interactions between helminth parasites and their hosts. Hypothetically, glycoconjugates may also be involved in the establishment of parasite–parasite associations. Changes in the surface saccharide residues during the development of Eudiplozoon nipponicum, a gill ectoparasite of carp (Cyprinus carpio) are described. Flat-fixed specimens and sections of diporpae, juveniles (just-fused) and adult worms were examined following exposure to a panel of 12 FITC-conjugated lectins. All developmental stages exhibited a specific surface binding pattern with ten lectins, indicating that Man/Glc, GlcNAc, Gal and GalNAc are probably present on their surfaces. No reaction was observed with Fuc-specific lectins (UEA-I and LTA). There is evidence that parasite development is accompanied by both qualitative and quantitative changes in the saccharide pattern distribution. The diporpa sucker reacted with nine lectins, excluding BS-II. A very strong binding of PNA, LCA and ConA (Gal and Man/Glc-specific lectins) was observed with the papilla glands of juvenile worms. The role of glandular secretions in this unique fusion process is discussed.

1971 ◽  
Vol 28 (10) ◽  
pp. 1385-1392 ◽  
Author(s):  
L. Margolis

The role of polychaetes as intermediate hosts of helminth parasites of aquatic vertebrates is reviewed. Some 18–20 species of trematodes and three or four each of cestodes and nematodes are known to have larval stages in these annelids. There are no records of acanthocephalan larvae from polychaetes. Trematoda use polychaetes as first (three species) or second intermediate hosts. The polychaete hosts are found among various genera of Errantia, Sedentaria, and Myzostomida. Definitive hosts are mainly fishes, with a few species of trematodes and one of cestodes developing in birds, and apparently one genus of nematodes (two species) maturing in the lungs of seals. A list of polychaetes and their larval helminth parasites is given.


Parasitology ◽  
2008 ◽  
Vol 135 (4) ◽  
pp. 407-426 ◽  
Author(s):  
D. W. THIELTGES ◽  
K. T. JENSEN ◽  
R. POULIN

SUMMARYThe transmission success of free-living larval stages of endohelminths is generally modulated by a variety of abiotic and biotic environmental factors. Whereas the role of abiotic factors (including anthropogenic pollutants) has been in focus in numerous studies and summarized in reviews, the role of biotic factors has received much less attention. Here, we review the existing body of literature from the fields of parasitology and ecology and recognize 6 different types of biotic factors with the potential to alter larval transmission processes. We found that experimental studies generally indicate strong effects of biotic factors, and the latter emerge as potentially important, underestimated determinants in the transmission ecology of free-living endohelminth stages. This implies that biodiversity, in general, should have significant effects on parasite transmission and population dynamics. These effects are likely to interact with natural abiotic factors and anthropogenic pollutants. Investigating the interplay of abiotic and biotic factors will not only be crucial for a thorough understanding of parasite transmission processes, but will also be a prerequisite to anticipate the effects of climate and other global changes on helminth parasites and their host communities.


2019 ◽  
Author(s):  
AR. Issa ◽  
J. Picao-Osorio ◽  
N. Rito ◽  
M.E. Chiappe ◽  
C.R. Alonso

ABSTRACTMovement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to the survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically-distinct developmental stages of an organism, but it is currently unclear whether these movements have a common or diverse molecular basis. Here we explore this problem in Drosophila focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8 which was previously shown to be essential for the fruit fly larva to correct its orientation if turned upside down (self-righting) (Picao-Osorio et al., 2015). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behaviour in the Drosophila adult, an organism with radically different morphological and neural constitution. Through the combination of gene-expression, optical imaging and quantitative behavioural approaches we provide evidence that miR-iab4 exerts its effects on adult self-righting behaviour through repression of the Hox gene Ultrabithorax (Ubx) (Morgan, 1923; Sánchez-Herrero et al., 1985) in a specific set of motor neurons that innervate the adult Drosophila leg. Our results show that this miRNA-Hox module affects the function, rather than the morphology of motor neurons and indicate that post-developmental changes in Hox gene expression can modulate behavioural outputs in the adult. Altogether our work reveals that a common miRNA-Hox genetic module can control complex movement in morphologically-distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Li ◽  
Zaichao Zheng ◽  
Hongyu Li ◽  
Rongrong Fu ◽  
Limei Xu ◽  
...  

AbstractDespite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1956
Author(s):  
Francesco Manfrevola ◽  
Bruno Ferraro ◽  
Carolina Sellitto ◽  
Domenico Rocco ◽  
Silvia Fasano ◽  
...  

The etiology of human asthenozoospermia is multifactorial. The need to unveil molecular mechanisms underlying this state of infertility is, thus, impelling. Circular RNAs (circRNAs) are involved in microRNA (miRNA) inhibition by a sponge activity to protect mRNA targets. All together they form the competitive endogenous RNA network (ceRNET). Recently, we have identified differentially expressed circRNAs (DE-circRNAs) in normozoospermic and asthenozoospermic patients, associated with high-quality (A-spermatozoa) and low-quality (B-spermatozoa) sperm. Here, we carried out a differential analysis of CRISP2, CATSPER1 and PATE1 mRNA expression in good quality (A-spermatozoa) and low quality (B-spermatozoa) sperm fractions collected from both normozoospermic volunteers and asthenozoospermic patients. These sperm fractions are usually separated on the basis of morphology and motility parameters by a density gradient centrifugation. B-spermatozoa showed low levels of mRNAs. Thus, we identified the possible ceRNET responsible for regulating their expression by focusing on circTRIM2, circEPS15 and circRERE. With the idea that motility perturbations could be rooted in quantitative changes of transcripts in sperm, we evaluated circRNA and mRNA modulation in A-spermatozoa and B-spermatozoa after an oral amino acid supplementation known to improve sperm motility. The profiles of CRISP2, CATSPER1 and PATE1 proteins in the same fractions of sperm well matched with the transcript levels. Our data may strengthen the role of circRNAs in asthenozoospermia and shed light on the molecular pathways linked to sperm motility regulation.


Author(s):  
Millissia Ben Maamar ◽  
Eric E Nilsson ◽  
Michael K Skinner

Abstract One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.


2015 ◽  
Vol 52 (3) ◽  
pp. 229-235 ◽  
Author(s):  
E. M. Mbokane ◽  
J. Theron ◽  
W. J. Luus-Powell

Abstract This study provides information on seasonal occurrence of developmental stages of endoparasites infecting three cyprinids in the Nwanedi-Luphephe dams, Limpopo River System. Labeobarbus marequensis (Smith, 1841), Barbus trimaculatus Peters, 1852 and Barbus radiatus Peters, 1853 were investigated seasonally from January 2008 to October 2008. The following larvae of metazoan parasites were collected: Diplostomum sp. from the eyes of L. marequensis and B. trimaculatus; Ornithodiplostomum sp. from the gills of B. trimaculatus; Posthodiplostomum sp. from muscle, skin and fins of B. trimaculatus and B. radiatus; third-stage Contracaecum larvae (L3) from the mesentery fats and on the liver lobes of L. marequensis and B. trimaculatus and gryporynchid cestode larvae from the outer intestinal wall of B. radiatus. All the flukes encountered were metacercariae. Diplostomum sp. and Contracaecum sp. dominated the parasite communities. Their prevalence exhibited seasonal fluctuations with maxima in summer. Factors likely to influence fish infection such as the body size of fish and their condition factors were also briefly considered in this study.


2002 ◽  
Vol 48 (4) ◽  
pp. 526-552 ◽  
Author(s):  
Barbara Bloom ◽  
Barbara Owen ◽  
Elizabeth Piper Deschenes ◽  
Jill Rosenbaum

This article reports findings from a survey of officials from various California state agencies and a series of interviews and focus groups with female youth and professionals serving this population. The study examined types of services provided, program barriers, and facilitation of change. The findings were used to make gender-specific policy and program recommendations. The authors found that meeting the needs of girls and young women requires specialized staffing and training, particularly in terms of relationship and communication skills, gender differences in delinquency, substance abuse education, the role of abuse, developmental stages of female adolescence, and available programs and appropriate placements and limitations. Effective programming for girls and women should be shaped by and tailored to their real-world situations and problems. In order to do this, a theoretical approach to treatment that is gender-sensitive and that addresses the realities of girls' lives must be developed.


2004 ◽  
Vol 379 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Marie-Chloé BOULANGER ◽  
Tina Branscombe MIRANDA ◽  
Steven CLARKE ◽  
Marco di FRUSCIO ◽  
Beat SUTER ◽  
...  

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 (Drosophilaarginine methyltransferases 1–9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


Parasitology ◽  
2004 ◽  
Vol 130 (1) ◽  
pp. 31-40 ◽  
Author(s):  
D. J. MORRIS ◽  
R. S. TERRY ◽  
K. B. FERGUSON ◽  
J. E. SMITH ◽  
A. ADAMS

The development of a new species, Bacillidium vesiculoformis n. sp. (Microspora, Mrazekiidae), is described from the freshwater oligochaete Nais simplex (Oligochaeta, Naididae). Initial stages of parasite development consist of a monokaryotic merogony within a haemocyte of the intestinal blood sinus. The resulting hypertrophied haemocyte is attached to the chloragocytes of the sinus by fine cytoplasmic extensions with the sinus around the cell becoming greatly enlarged. The meronts within the haemocyte form diplokaryotic sporonts that undergo sporogenesis directly within the cytoplasm of the host cell. The infected cell becomes packed with spores and developmental stages, causing it dramatically to increase in size, eventually rupturing the oligochaete and cell. Sporogony appears to be disporoblastic. Released spores were observed to have an adhesive quality. Transmission studies conducted with mature spores failed to transmit the parasite horizontally although vertical transmission was observed. Phylogenetic analysis of the parasite demonstrated that B. vesiculoformis clustered with microsporidian parasites of bryozoa and two other microsporidians, Janacekia debaiseuxi and an unidentified Bacillidium sp.


Sign in / Sign up

Export Citation Format

Share Document