Combined effect of fulvestrant and low dose BPA: comparative implications on EMT, apoptosis, and TGF-β1 signaling in HepG2 cells

Author(s):  
Esin Öz ◽  
Tuba Tüylü Küçükkılınç
Keyword(s):  
Low Dose ◽  
2014 ◽  
Vol 52 (01) ◽  
Author(s):  
M Neß ◽  
SK Meurer ◽  
E Borkham-Kamphorst ◽  
R Weiskirchen

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Li ◽  
Jing Zhou ◽  
Yajie Zhang ◽  
Jing Zhang ◽  
Xue Li ◽  
...  

Abstract Background Echinacoside (ECH) is the main active ingredient of Cistanches Herba, which is known to have therapeutic effects on metastatic tumors. However, the effects of ECH on liver cancer are still unclear. This study was to investigate the effects of ECH on the aggression of liver cancer cells. Methods Two types of liver cancer cells Huh7 and HepG2 were treated with different doses of ECH at different times and gradients. MTT and colony formation assays were used to determine the effects of ECH on the viability of Huh7 and HepG2 cells. Transwell assays and flow cytometry assays were used to detect the effects of ECH treatment on the invasion, migration, apoptosis and cell cycle of Huh7 and HepG2 cells. Western blot analysis was used to detect the effects of ECH on the expression levels of TGF-β1, smad3, smad7, apoptosis-related proteins (Caspase-3, Caspase-8), and Cyto C in liver cancer cells. The relationship between miR-503-3p and TGF-β1 was detected using bioinformatics analysis and Luciferase reporter assay. Results The results showed that ECH inhibited the proliferation, invasion and migration of Huh7 and HepG2 cells in a dose- and time-dependent manner. Moreover, we found that ECH caused Huh7 and HepG2 cell apoptosis by blocking cells in S phase. Furthermore, the expression of miR-503-3p was found to be reduced in liver tumor tissues, but ECH treatment increased the expression of miR-503-3p in Huh7 and HepG2 cells. In addition, we found that TGF-β1 was identified as a potential target of miR-503-3p. ECH promoted the activation of the TGF-β1/Smad signaling pathway and increased the expression levels of Bax/Bcl-2. Moreover, ECH could trigger the release of mitochondrial Cyto C, and cause the reaction Caspases grade. Conclusions This study demonstrates that ECH exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer, and provides a safe and effective anti-tumor agent for liver cancer.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2341-2341
Author(s):  
Kouzbari Karim ◽  
Gostynska Sandra ◽  
Sonia Elhadad ◽  
Dube Pratibha ◽  
Jeffrey Laurence ◽  
...  

Combination antiretroviral therapies (cART) have markedly reduced mortality in HIV infection. However, cardiovascular disease (CVD), including heart failure linked to fibrosis, remains a major cause of morbidity and mortality in HIV/cART patients. The magnitude of this risk increases with use of certain protease inhibitors (PI), but the underlying mechanism remains unclear. We showed that the PI ritonavir leads to increased plasma levels of the pro-fibrotic cytokine TGF-β1, cardiac dysfunction, and pathologic cardiac fibrosis in wild-type (wt) C57BL/6 mice. Mice with targeted depletion of platelet TGF-β1 had reduced cardiac fibrosis and partially preserved cardiac function following ritonavir exposure (Laurence, et al. PLoS One 2017;12:e0187185). Several groups have examined the effects of a variety of cART agents on agonist-induced platelet aggregation, but correlations with clinical CVD are weak. Since platelets are a rich source of TGF-β1, we hypothesized that ritonavir and other PIs linked clinically to an increased CVD risk directly activate platelets to release TGF-β1 and activate latent (L)TGF-β1 to initiate signaling for organ fibrosis. We examined the impact of clinically relevant doses of ritonavir, alone and in combination with two other contemporary PIs, atazanavir and darunavir, which are currently used along with low dose ritonavir in so-called PI-boosted cART regimens. We incubated human platelet-rich plasma and washed platelets with PIs alone or in combinations at various doses for 10 min at 37°C in a platelet aggregometer (BioData. Corp). Total and active TGF-β1 levels were measured by ELISA. For in vivo assessment, we treated wt mice with a low dose of ritonavir, as used in PI-boosted cART, and measured the levels of plasma TGF-β1 by ELISA, and TGF-β1 signaling in tissues by immunofluorescence imaging for pSmad2. We found that ritonavir dose-dependently increased total TGF-β1 release from freshly-isolated platelet-rich plasma and washed human platelets. This release was blocked by ceefurin-1 and MK517, potent inhibitors of the ATP binding cassette transporter ABCC4. Darunavir alone did not cause release of TGF-β1, and did not alter significantly ritonavir-induced TGF-β1 release (Figure-1A). Atazanavir alone did induce release of TGF-β1 from platelets and did not affect the extent of such release induced by ritonavir (Figure-1A). Since total TGF-β1 released from platelets must be activated in order to signal, we tested whether these PIs could activate LTGF-β1. Ritonavir alone, in low dose, activated TGF-β1 by 4-5-fold (Fig-1B). Darunavir alone did not activate LTGF-β1, and had only a minor effect on ritonavir-induced TGF-β1 activation (Fig-1B). In marked contrast, while atazanavir also did not activate LTGF-β1, it significantly inhibited ritonavir-induced LTGF-β1 activation (Fig-1B). For in vivo assessment, wt mice were injected daily for 8 weeks with ritonavir, which dose-dependently increased plasma TGF-β1 levels (mean levels with vehicle 2.1 ng/ml; 6.4 ng/ml with 5 mg/kg ritonavir; 8.5 ng/ml with 10 mg/kg ritonavir). Increased TGF-β1 levels correlated with development of pathologic fibrosis and increased phosphorylated Smad signaling in hearts of ritonavir-treated vs. vehicle-treated mice. Clinical correlations with these in vitro and in vivo mouse studies are important. The fact that ritonavir effected both release and activation of platelet TGF-β1 is consistent with its ability to induce cardiac fibrosis and dysfunction in mice, and its association with accelerated CVD in HIV-infected individuals. Our findings that low dose ritonavir in combination with darunavir induced release and activation of platelet TGF-β1, whereas atazanavir blocked TGF-β1 activation, are consistent with the strong association of ritonavir-boosted darunavir, but not ritonavir-boosted atazanavir, with CVD in the setting of HIV (Ryom, et al. Lancet-HIV 2018;5:e291-e300). Future work will examine the effects of other contemporary cART agents, including cobicistat, which is currently replacing ritonavir in many PI-boosted therapies and some integrase-boosted regimens, on TGF-β1 release and activation, for which correlations with clinical CVD are not yet available. Identification of the mechanism of pathologic fibrosis in the heart, and potentially other organs affected by certain cART regimens, such as the kidney, may suggest specific therapeutic interventions. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (16) ◽  
pp. 4054 ◽  
Author(s):  
Michael Rogowski ◽  
Lorenza Bellusci ◽  
Martina Sabatini ◽  
Simona Rapposelli ◽  
Shaikh M. Rahman ◽  
...  

3-Iodothyronamine (T1AM) and its synthetic analog SG-2 are rapidly emerging as promising drivers of cellular metabolic reprogramming. Our recent research indicates that in obese mice a sub-chronic low dose T1AM treatment increased lipolysis, associated with significant weight loss independent of food consumption. The specific cellular mechanism of T1AM’s lipolytic effect and its site of action remains unknown. First, to study the mechanism used by T1AM to gain entry into cells, we synthesized a fluoro-labeled version of T1AM (FL-T1AM) by conjugating it to rhodamine (TRITC) and analyzed its cellular uptake and localization in 3T3-L1 mouse adipocytes. Cell imaging using confocal microscopy revealed a rapid intercellular uptake of FL-T1AM into mitochondria without localization to the lipid droplet or nucleus of mature adipocytes. Treatment of 3T3-L1 adipocytes with T1AM and SG-2 resulted in decreased lipid accumulation, the latter showing a significantly higher potency than T1AM (10 µM vs. 20 µM, respectively). We further examined the effects of T1AM and SG-2 on liver HepG2 cells. A significant decrease in lipid accumulation was observed in HepG2 cells treated with T1AM or SG-2, due to increased lipolytic activity. This was confirmed by accumulation of glycerol in the culture media and through activation of the AMPK/ACC signaling pathways.


2012 ◽  
Vol 28 (2) ◽  
pp. 742-748 ◽  
Author(s):  
XU-ZHENG CHEN ◽  
ZHI-YUN CAO ◽  
TUAN-SHENG CHEN ◽  
YOU-QUAN ZHANG ◽  
ZHI-ZHEN LIU ◽  
...  

2013 ◽  
Vol 17 (3) ◽  
pp. 752-758 ◽  
Author(s):  
Xiaodong Ma ◽  
Jingjing Ding ◽  
Haiyan Min ◽  
Yanting Wen ◽  
Qian Gao

Sign in / Sign up

Export Citation Format

Share Document