Emulsion particle size in porous media and its effect on the displacement efficiency

2018 ◽  
Vol 39 (10) ◽  
pp. 1532-1536 ◽  
Author(s):  
Yazhou Zhou ◽  
Daiyin Yin ◽  
Dongqi Wang ◽  
Xue Gao
Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xianhai Hu ◽  
Xingyuan Zhang ◽  
Jin Liu

A waterborne polyurethane-based polymeric dye (WPU-CFBB) was synthesized by anchoring 1, 4-bis(methylamino)anthraquinone (CFBB) to waterborne polyurethane chains. The number molecular weight, glass transition temperature, and average emulsion particle size for the polymeric dye were determined, respectively. This polymeric dye exhibited intriguing optical behaviors. The polymeric dye engendered two new absorption bands centered at about 520 nm and 760 nm if compared with CFBB in UV-vis spectra. The 760 nm peak showed hypsochromic shift with the decrease of average particle sizes. The polymeric dye dramatically demonstrated both hypsochromic and bathochromic effects with increasing temperature. The fluorescence intensity of the polymeric dye was much higher than that of CFBB. It was found that the fluorescence intensities would be enhanced from 20°C to 40°C and then decline from 40°C to 90°C. The fluorescence of the polymeric dye emulsion was very stable and was not sensitive to quenchers.


2019 ◽  
Vol 7 (9) ◽  
pp. 291 ◽  
Author(s):  
Xiang Cui ◽  
Changqi Zhu ◽  
Mingjian Hu ◽  
Xinzhi Wang ◽  
Haifeng Liu

Dispersion characteristics are important factors affecting groundwater solute transport in porous media. In marine environments, solute dispersion leads to the formation of freshwater aquifers under islands. In this study, a series of model tests were designed to explore the relationship between the dispersion characteristics of solute in calcareous sands and the particle size, degree of compactness, and gradation of porous media, with a discussion of the types of dispersion mechanisms in coral sands. It was found that the particle size of coral sands was an important parameter affecting the dispersion coefficient, with the dispersion coefficient increasing with particle size. Gradation was also an important factor affecting the dispersion coefficient of coral sands, with the dispersion coefficient increasing with increasing d10. The dispersion coefficient of coral sands decreased approximately linearly with increasing compactness. The rate of decrease was −0.7244 for single-grained coral sands of particle size 0.25–0.5 mm. When the solute concentrations and particle sizes increased, the limiting concentration gradients at equilibrium decreased. In this study, based on the relative weights of molecular diffusion versus mechanical dispersion under different flow velocity conditions, the dispersion mechanisms were classified into five types, and for each type, a corresponding flow velocity limit was derived.


1989 ◽  
Vol 50 (6) ◽  
pp. 1370-1381 ◽  
Author(s):  
O Lutz ◽  
Z Meraihi ◽  
J L Mura ◽  
A Frey ◽  
G H Riess ◽  
...  

2019 ◽  
Vol 116 (28) ◽  
pp. 13799-13806 ◽  
Author(s):  
Benzhong Zhao ◽  
Christopher W. MacMinn ◽  
Bauyrzhan K. Primkulov ◽  
Yu Chen ◽  
Albert J. Valocchi ◽  
...  

Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.


1964 ◽  
Vol 4 (03) ◽  
pp. 231-239 ◽  
Author(s):  
A.S. Michaels ◽  
Arnold Stancell ◽  
M.C. Porter

MICHAELS, A.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. MEMBER AIME STANCELL, ARNOLD, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. PORTER, M.C., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. Abstract Previous laboratory studies have demonstrated that the injection of small quantities of reverse wetting agents during water displacement can increase oil recovery from unconsolidated porous media. In the present investigation, an attempt has been made to determine more fully the effects of reverse wetting treatments and to clarify the mechanism by which increased oil recovery is effected Water-oil displacements were performed in beds of 140–200 mesh silica sand. Hexylamine slugs (injected after 0.25 pore volume of water through put), when adequate in size and concentration, were effective in promoting additional oil recovery. Their effectiveness increased with the quantity of amine injected. However, slugs of sufficient size and concentration to stimulate oil production at water flow rates of 34 ft/day did not do so at 4 ft/day.Visual studies in a glass grid micromodel have shown that the stimulation of oil production, via aqueous bexylamine, is a result of transient changes in the oil wettability of the pore walls. If the am in e slug is of sufficient size and concentration to induce significant changes in the adhesion-tension, large continuous oil masses will be formed. If the superficial water velocity is high enough to result in rapid desorption of the am in e, a favorable "wettability gradient" may be established across the masses; under such conditions, high oil mobility is observed, and increased oil recovery results. Introduction It is generally agreed that the efficiency of oil displacement by water in porous media is limited in part by capillary forces which cause the retention of isolated masses of oil - resulting in the so-called "irreducible minimum oil saturation". Recent estimates indicate that there are about 220 billion bbl of petroleum in United States reservoirs which are not economically recoverable with present techniques (such as water flooding). This amounts to almost five times the known recoverable reserves. It has been recognized for some time that a suitable alteration in the water-oil interfacial tension and/or the contact angle, as measured between the water-oil interface and the solid surface, should result in better displacement efficiency. Surface active agents can be used as interfacial tension depressants to accomplish this objective, but unfortunately, the additional oil recovery is seldom commensurate with the treatment cost.In contrast to interfacial tension depressants, the effect of contact angle alterations on water- oil displacements has received relatively little attention in the literature. It is known that the wettability affects the displacement process. Displacements in water-wet systems generally result in lower residual oil saturations than those in oil-wet systems. The effect of "transient" wettability alterations concurrent with the displacement process have been investigated by Wagner, Leach and coworkers, wherein it has been demonstrated that the establishment of water- wet conditions during water flooding of oil-wet, oil-saturated porous media is accompanied by significant increase in oil displacement efficiency. Michaels and Timmins studied the effects of transient contact angle alterations resulting from chromatographic transport of reverse wetting agents through unconsolidated sand. It was demonstrated that chromatographic transport of short-chain (C4 through C8) primary aliphatic amines can improve oil recovery and that the recovery increases with the quantity of amine injected (i.e., with either the amine concentration or the volume of the slug injected). Circumstantial evidence indicated that the increased displacement efficiency resulted primarily from transient changes in wettability of the porous medium.In the present investigation, additional information has been obtained on the effects of reverse wetting treatments and the mechanism by which increased oil recovery is accomplished. SPEJ P. 231^


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128414 ◽  
Author(s):  
Yanling Wang ◽  
Jiafeng Jin ◽  
Baojun Bai ◽  
Mingzhen Wei

Sign in / Sign up

Export Citation Format

Share Document