On the relationship between negative affective priming and prefrontal cognitive control mechanisms

2015 ◽  
Vol 30 (2) ◽  
pp. 225-244 ◽  
Author(s):  
Rosalux Falquez ◽  
Simone Lang ◽  
Ramona Dinu-Biringer ◽  
Frauke Nees ◽  
Elisabeth Arens ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Sami Schiff ◽  
Giulia Testa ◽  
Maria Luisa Rusconi ◽  
Paolo Angeli ◽  
Daniela Mapelli

It is thought that just as hunger itself, the expectancy to eat impacts attention and cognitive control toward food stimuli, but this theory has not been extensively explored at a behavioral level. In order to study the effect of expectancy to eat on attentional and cognitive control mechanisms, 63 healthy fasting participants were presented with an affective priming spatial compatibility Simon task that included both food and object (non-food) distracters. The participants (N = 63) were randomly assigned to two groups: an “immediate expectancy” group made up of participants who expected to eat immediately after the task (N = 31; females = 21; age = 26.8 ± 9.6) and a “delayed expectancy” cohort made up of individuals who expected to eat a few hours later (N = 32; females = 21; age = 25.0 ± 8.0). Slower reaction times (RTs) toward the food and non-food distracters and a more pronounced effect on the RTs in the incompatible condition [i.e., the Simon effect (SE)] were noted in both groups. The effect of the food and non-food distracters on the RTs was more pronounced in the immediate with respect to the delayed expectancy group. The magnitude of the SE for the food and the non-food distracters was also greater in the immediate with respect to the delayed expectancy group. These results seem to indicate that when the expectancy to eat is short, the RTs are delayed, and the SE is more pronounced when food and non-food distracters are presented. Instead, when the expectancy to eat is more distant, the distracters have less of an effect on the RTs and the correspondence effect is smaller. Our results suggest that the expectancy to eat can modulate both attention orienting and cognitive control mechanisms in healthy fasting individuals when distracting details are competing with information processing during goal directed behavior.


Author(s):  
Michael P. Berner ◽  
Markus A. Maier

Abstract. Results from an affective priming experiment confirm the previously reported influence of trait anxiety on the direction of affective priming in the naming task ( Maier, Berner, & Pekrun, 2003 ): On trials in which extremely valenced primes appeared, positive affective priming reversed into negative affective priming with increasing levels of trait anxiety. Using valenced target words with irregular pronunciation did not have the expected effect of increasing the extent to which semantic processes play a role in naming, as affective priming effects were not stronger for irregular targets than for regular targets. This suggests the predominant operation of a whole-word nonsemantic pathway in reading aloud in German. Data from neutral priming trials hint at the possibility that negative affective priming in participants high in trait anxiety is due to inhibition of congruent targets.


Author(s):  
David Beltrán ◽  
Bo Liu ◽  
Manuel de Vega

AbstractNegation is known to have inhibitory consequences for the information under its scope. However, how it produces such effects remains poorly understood. Recently, it has been proposed that negation processing might be implemented at the neural level by the recruitment of inhibitory and cognitive control mechanisms. On this line, this manuscript offers the hypothesis that negation reuses general-domain mechanisms that subserve inhibition in other non-linguistic cognitive functions. The first two sections describe the inhibitory effects of negation on conceptual representations and its embodied effects, as well as the theoretical foundations for the reuse hypothesis. The next section describes the neurophysiological evidence that linguistic negation interacts with response inhibition, along with the suggestion that both functions share inhibitory mechanisms. Finally, the manuscript concludes that the functional relation between negation and inhibition observed at the mechanistic level could be easily integrated with predominant cognitive models of negation processing.


2019 ◽  
Vol 31 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Peter S. Whitehead ◽  
Mathilde M. Ooi ◽  
Tobias Egner ◽  
Marty G. Woldorff

The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.


2021 ◽  
pp. 1-22
Author(s):  
Jenny R. Rieck ◽  
Giulia Baracchini ◽  
Cheryl L. Grady

Cognitive control involves the flexible allocation of mental resources during goal-directed behavior and comprises three correlated but distinct domains—inhibition, shifting, and working memory. The work of Don Stuss and others has demonstrated that frontal and parietal cortices are crucial to cognitive control, particularly in normal aging, which is characterized by reduced control mechanisms. However, the structure–function relationships specific to each domain and subsequent impact on performance are not well understood. In the current study, we examined both age and individual differences in functional activity associated with core domains of cognitive control in relation to fronto-parietal structure and task performance. Participants ( N = 140, aged 20–86 years) completed three fMRI tasks: go/no-go (inhibition), task switching (shifting), and n-back (working memory), in addition to structural and diffusion imaging. All three tasks engaged a common set of fronto-parietal regions; however, the contributions of age, brain structure, and task performance to functional activity were unique to each domain. Aging was associated with differences in functional activity for all tasks, largely in regions outside common fronto-parietal control regions. Shifting and inhibition showed greater contributions of structure to overall decreases in brain activity, suggesting that more intact fronto-parietal structure may serve as a scaffold for efficient functional response. Working memory showed no contribution of structure to functional activity but had strong effects of age and task performance. Together, these results provide a comprehensive and novel examination of the joint contributions of aging, performance, and brain structure to functional activity across multiple domains of cognitive control.


1992 ◽  
Vol 262 (6) ◽  
pp. S9 ◽  
Author(s):  
E Bowdan

Regulation of feeding is a fundamental element of homeostasis. This is reflected in the similarity of control mechanisms in a wide range of animals, including insects and humans. A close examination of feeding behavior can illuminate the physiological processes driving regulation. A simple, inexpensive method for recording fine details of feeding by caterpillars is described. Possible experiments, interpretation of the data, and the relationship of observations to the underlying physiology, are outlined.


2016 ◽  
Vol 6 (1-2) ◽  
pp. 119-146 ◽  
Author(s):  
Henrike K. Blumenfeld ◽  
Scott R. Schroeder ◽  
Susan C. Bobb ◽  
Max R. Freeman ◽  
Viorica Marian

Abstract Recent research suggests that bilingual experience reconfigures linguistic and nonlinguistic cognitive processes. We examined the relationship between linguistic competition resolution and nonlinguistic cognitive control in younger and older adults who were either bilingual or monolingual. Participants heard words in English and identified the referent among four pictures while eye-movements were recorded. Target pictures (e.g., cab) appeared with a phonological competitor picture (e.g., cat) and two filler pictures. After each eye-tracking trial, priming probes assessed residual activation and inhibition of target and competitor words. When accounting for processing speed, results revealed that age-related changes in activation and inhibition are smaller in bilinguals than in monolinguals. Moreover, younger and older bilinguals, but not monolinguals, recruited similar inhibition mechanisms during word identification and during a nonlinguistic Stroop task. Results suggest that, during lexical access, bilinguals show more consistent competition resolution and recruitment of cognitive control across the lifespan than monolinguals.


Sign in / Sign up

Export Citation Format

Share Document