Has the role of the substratum been underestimated for algal distribution patterns in freshwater ecosystems?

Biofouling ◽  
1988 ◽  
Vol 1 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Eileen J Cox
Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisabeth W. Vissers ◽  
Flavio S. Anselmetti ◽  
Paul L. E. Bodelier ◽  
Gerard Muyzer ◽  
Christa Schleper ◽  
...  

Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO). This study of Lake Lucerne determined the abundance of bothamoAgenes and gene transcripts of ammonia-oxidizing archaea (AOA) and bacteria (AOB) over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances ofamoAgene transcripts were observed at the onset and end of summer stratification. In summer, archaealamoAgenes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain theamoAgene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.


2020 ◽  
Vol 8 (3) ◽  
pp. 216 ◽  
Author(s):  
Cristiana Guerranti ◽  
Guido Perra ◽  
Tania Martellini ◽  
Luisa Giari ◽  
Alessandra Cincinelli

Plastic debris occurring in freshwater environments, which can either come from the surrounding terrestrial areas or transported from upstream, has been identified as one of the main sources and routes of plastic pollution in marine systems. The ocean is the final destination of land- based microplastic sources, but compared to marine environments, the occurrence and effects of microplastics in freshwater ecosystems remain largely unknown. A thorough examination of scientific literature on abundance, distribution patterns, and characteristics of microplastics in freshwater environments in Mediterranean tributary rivers has shown a substantial lack of information and the need to apply adequate and uniform measurement methods.


2021 ◽  
Vol 7 (11) ◽  
pp. 968
Author(s):  
Hossein Masigol ◽  
Jason Nicholas Woodhouse ◽  
Pieter van West ◽  
Reza Mostowfizadeh-Ghalamfarsa ◽  
Keilor Rojas-Jimenez ◽  
...  

The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


2019 ◽  
Vol 42 (1) ◽  
pp. 3-17 ◽  
Author(s):  
M Jobard ◽  
I Wawrzyniak ◽  
G Bronner ◽  
D Marie ◽  
A Vellet ◽  
...  

Abstract Studies on freshwater Perkinsea are scarce compared to their marine counterparts; they are therefore not well ecologically characterized. In this study, we investigated the diversity, distribution and ecological role of Perkinsea in freshwater ecosystems. Our approach included (1) the phylogenetic analyses of near full-length SSU and LSU sequences of freshwater Perkinsea, (2) a meta-analysis of public Perkinsea 18S ribosomal RNA gene sequences available from the freshwater environments (25 lakes, 4 rivers), (3) microscopic observations of Perkinsea associated with planktonic communities and (4) single amplified genome analysis. Whereas Perkinsea appear to be rare in river ecosystems (85 reads), they are found in almost all of the lakes studied. However, their diversity does vary considerably between lakes (from 0 to 2 463 Operational Taxonomic Units (OTUs)). Phylogenetic analysis showed that the Parvilucifera/Dinovorax/Snorkelia and Perkinsus/Xcellia/Gadixcellia clades resulted from an initial speciation event. This second clade is further split into well-supported, monophyletic groups, including a clade dominated by freshwater representatives, which is further structured into three distinct subclades: freshwater clade 1, freshwater clade 2 and a freshwater and brackish clade. The Perkinsea Single Amplified Genome (SAG) as well as most of the abundant Operational Taxonomic Units (OTUs) fall into freshwater clade 2. The tyramide signal amplification-fluorescent in situ hybridization method showed an internal association between Perkinsea and the colonial phytoplankton Sphaerocystis. The Single Amplified Genome (SAG) annotation contained 698 genes and gene ontology terms could be assigned to 486 protein-coding genes. Although the number of genes appears to be low (10.6% of the entire gene set assessed by BUSCO), the analysis of the proteome revealed some putative secreted virulence factors. This study showed a large distribution of Perkinsea across lake ecosystems and potential parasitic association with phytoplankton. However, further investigations are needed for a better knowledge on the role of these microorganisms in freshwater ecosystems.


Crustaceana ◽  
2019 ◽  
Vol 92 (11-12) ◽  
pp. 1415-1426
Author(s):  
Juan-Alejandro Norambuena ◽  
Jorge Farías ◽  
Patricio De los Ríos

Abstract Daphnia pulex is a freshwater planktonic crustacean, allegedly a cosmopolitan species, which is found in lentic ecosystems. The aim of this study was to conduct a literature review of D. pulex related to its life history and genetic variability, in order to mark a route for future studies. We noted that D. pulex is a model species on which ecological studies have been carried out, as well as molecular studies, in which its molecular diversity has been characterized and such in specimens from different environments: both pristine and under human influence. In particular those studies are highlighted, in which molecular tools have been used to construct phylogenetic trees for study intraspecific differences. Also, in some of these molecular studies, analyses of genetic, inter- and intraspecific diversity have been performed. In addition, analyses of protein expression in D. pulex and related species seem promising in evaluating the detailed role of this species.


Biology ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 307 ◽  
Author(s):  
Kornélia Bodó ◽  
Nicoló Baranzini ◽  
Rossana Girardello ◽  
Bohdana Kokhanyuk ◽  
Péter Németh ◽  
...  

Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.


2016 ◽  
Vol 22 (2) ◽  
pp. 101-112
Author(s):  
Dalytė Matulevičiūtė

Abstract Several species of willowherb (Epilobium) are considered as agricultural weeds and their prevalence has become an increasing problem in agriculture. The aim of this study was to investigate the role of willowherb plants in the initial stage of vegetation succession a year after the use of glyphosate. The study was based on the examination of thirteen willowherb specimens collected in the apple orchard of 0.2 ha area in August 2008, one month after glyphosate treatment, and vegetation field investigations in the same orchard in July 2009. The coverage of herb layer, the abundance and life stages of Epilobium plants in twenty plots of 1 m2 in size were investigated. The specimens of willowherbs, which survived the glyphosate application in 2008, were identified as Epilobium ciliatum and E. tetragonum. A year after the glyphosate treatment, the willowherb plants prevailed in the vegetation. One alien (E. ciliatum) and three native (E. hirsutum, E. parviflorum and E. tetragonum) species of willowherb were found. E. ciliatum was the most abundant. This species was characterized by the highest number of reproductive and virginile plants. E. parviflorum and E. tetragonum plants were abundant with a very high proportion of reproductive plants. Only pre-reproductive plants of E. hirsutum occurred in the study plots. The reproductive plants represented more than one third of the total number of willowherb plants. The distribution patterns of willowherb species in the plots were very variable.


2020 ◽  
Vol 193 (3) ◽  
pp. 275-283
Author(s):  
Miguel Saigo ◽  
Mercedes Marchese ◽  
Luciana Montalto

Metacommunity theory is a mechanistic framework that explains the interdependence of local factors and regional processes as community drivers. Recent evidence suggests that dispersal mode is a key trait that potentially affects metacommunity dynamics. We analyzed the distribution patterns of benthic macroinvertebrates with different dispersal modes in the Middle Paraná, a neotropical large river. We assessed the relative importance of local environmental conditions and regional spatial structure as assemblage drivers. Aquatic and aerial dispersers presented Clementsian and Gleasonian structures, respectively. For both groups, local environmental conditions influenced community assembly, and spatial structure (overland distances) also affected the distribution of aerial dispersers. Our study highlights that the role of spatial structure as a driver of benthic metacommunities depends on species' dispersal modes. Aerial dispersers responded to regional spatial variables and it is likely that these organisms are also influenced by mass effects. Our results are consistent with current ideas of metacommunity dynamics in large rivers, where dispersal is not considered to limit the distribution of benthic organisms.


Sign in / Sign up

Export Citation Format

Share Document