Present and future thermal interface materials for electronic devices

2017 ◽  
Vol 63 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Kafil M. Razeeb ◽  
Eric Dalton ◽  
Graham Lawerence William Cross ◽  
Anthony James Robinson
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1201 ◽  
Author(s):  
Le Lv ◽  
Wen Dai ◽  
Aijun Li ◽  
Cheng-Te Lin

With the increasing power density of electrical and electronic devices, there has been an urgent demand for the development of thermal interface materials (TIMs) with high through-plane thermal conductivity for handling the issue of thermal management. Graphene exhibited significant potential for the development of TIMs, due to its ultra-high intrinsic thermal conductivity. In this perspective, we introduce three state-of-the-art graphene-based TIMs, including dispersed graphene/polymers, graphene framework/polymers and inorganic graphene-based monoliths. The advantages and limitations of them were discussed from an application point of view. In addition, possible strategies and future research directions in the development of high-performance graphene-based TIMs are also discussed.


Author(s):  
ZK Li ◽  
Zhekun Fan ◽  
Long Dou ◽  
Zhong Jin ◽  
Zhan Liu ◽  
...  

Abstract Under the action of electro-thermal-mechanical coupling, the failure and performance degradation of electronic devices are prone to occur, which has become a particularly important reliability problem in microelectronic packaging. The improvement of flip chip reliability by using thermal interface materials was studied. First, a three-dimensional finite element model of the flip-chip packaging system, and finite element simulation of electric-thermal-force multi-field coupling were conducted, and the Joule heating, temperature distribution, thermal stress and deformation of the flip-chip under high current density was analyzed. At the same time, the influence of thermal interface material thermal conductivity and operating current on flip chip reliability was studied. Then, the reliability experiment of the flip chip connected to the radiator under high current density was performed, and the temperature change in the flip chip under different thermal interface materials was obtained. Finally, through the combination of experiment and simulation, the influence of thermal interface materials on flip chip reliability was analyzed. It is further confirmed that the reliability and service life of electronic devices were effectively improved by using the high thermal conductivity BNNS/epoxy composite material prepared in this paper.


Author(s):  
Yingyan Zhang ◽  
Jun Ma ◽  
Ning Wei ◽  
Jie Yang ◽  
Qing-Xiang Pei

Modern electronic devices are characterized by high-power and high-frequency with excessive heat accumulation. Thermal interface materials (TIMs) are of crucial importance for efficient heat dissipation to maintain proper functions and...


Author(s):  
Shuaishuai Cheng ◽  
Xiaoyuan Duan ◽  
Liu Xiaoqing ◽  
Zhiyi Zhang ◽  
Dong An ◽  
...  

Abstract: With the development of electronic devices, it is becoming increasingly important for thermal interface materials (TIM) to efficiently and quickly remove the heat generated. However, due to the high...


Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


Sign in / Sign up

Export Citation Format

Share Document