scholarly journals Antibiotic resistance genes in the faeces of dairy cows following short-term therapeutic and prophylactic antibiotic administration

2019 ◽  
Vol 48 (1) ◽  
pp. 34-37
Author(s):  
Xin Feng ◽  
Lindsey R. Chambers ◽  
Katharine F. Knowlton
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ishi Keenum ◽  
Robert K. Williams ◽  
Partha Ray ◽  
Emily D. Garner ◽  
Katharine F. Knowlton ◽  
...  

Abstract Background Research is needed to delineate the relative and combined effects of different antibiotic administration and manure management practices in either amplifying or attenuating the potential for antibiotic resistance to spread. Here, we carried out a comprehensive parallel examination of the effects of small-scale (> 55 °C × 3 days) static and turned composting of manures from dairy and beef cattle collected during standard antibiotic administration (cephapirin/pirlimycin or sulfamethazine/chlortetracycline/tylosin, respectively), versus from untreated cattle, on “resistomes” (total antibiotic resistance genes (ARGs) determined via shotgun metagenomic sequencing), bacterial microbiota, and indicator ARGs enumerated via quantitative polymerase chain reaction. To gain insight into the role of the thermophilic phase, compost was also externally heated to > 55 °C × 15 days. Results Progression of composting with time and succession of the corresponding bacterial microbiota was the overarching driver of the resistome composition (ANOSIM; R = 0.424, p = 0.001, respectively) in all composts at the small-scale. Reduction in relative abundance (16S rRNA gene normalized) of total ARGs in finished compost (day 42) versus day 0 was noted across all conditions (ANOSIM; R = 0.728, p = 0.001), except when externally heated. Sul1, intI1, beta-lactam ARGs, and plasmid-associated genes increased in all finished composts as compared with the initial condition. External heating more effectively reduced certain clinically relevant ARGs (blaOXA, blaCARB), fecal coliforms, and resistome risk scores, which take into account putative pathogen annotations. When manure was collected during antibiotic administration, taxonomic composition of the compost was distinct according to nonmetric multidimensional analysis and tet(W) decayed faster in the dairy manure with antibiotic condition and slower in the beef manure with antibiotic condition. Conclusions This comprehensive, integrated study revealed that composting had a dominant effect on corresponding resistome composition, while little difference was noted as a function of collecting manure during antibiotic administration. Reduction in total ARGs, tet(W), and resistome risk suggested that composting reduced some potential for antibiotic resistance to spread, but the increase and persistence of other indicators of antibiotic resistance were concerning. Results indicate that composting guidelines intended for pathogen reduction do not necessarily provide a comprehensive barrier to ARGs or their mobility prior to land application and additional mitigation measures should be considered.


2021 ◽  
Author(s):  
LINGLING WANG ◽  
Haobin Yao ◽  
Tereasa Tong ◽  
KS Lau ◽  
Suet Yi Leung ◽  
...  

Abstract Background: Short-term antibiotics exposure is associated with alterations in microbiota and antibiotic resistance genes (ARGs) in the human gut. While antibiotics are critical in the successful eradication of Helicobacter pylori, the short-term and long-term impacts on the composition and quantity of antibiotics resistance genes after H. pylori eradication is unclear. This study used whole genome shotgun metagenomic of stool samples to characterize the gut microbiota and ARGs, before and after H. pylori eradication therapy. Results: Forty-four H. pylori-infected patients were recruited including 21 treatment naïve patients who received clarithromycin-based triple therapy (CLA group) and 23 patients who failed previous therapies, in which 10 received levofloxacin-based quadruple therapy [LEVO group] and 13 received other combinations [OTHER group] in the current study. Stool samples were collected at baseline (before current treatment), 6-week and 6-month after eradication therapy. At baseline, there was only a slight difference among the three groups on ARGs and gut microbiota. After eradication therapy, there was a transient but significant increase in gut ARGs 6-week post-therapy, among which the LEVO group had the most significant ARGs alteration compared to other two groups. For treatment naïve patients, those with higher ARG richness and ErmF abundance were prone to fail CLA eradication. For gut microbiota, the bacteria richness decreased at 6-week and there was a significant difference in microbiota community among the three groups at 6-week. Conclusions: Our findings demonstrated the dynamic alterations in gut microbiota and ARGs induced by different eradication therapies, which could influence the choices of antibiotics in eradication therapy.


2018 ◽  
Vol 10 (425) ◽  
pp. eaar7519
Author(s):  
Stephanie A. Christenson

The effect of antibiotic resistance genes on the gut microbiome is examined in preterm infants before and after antibiotic administration.


Author(s):  
Kassidy O'Malley ◽  
Patrick McNamara ◽  
Walter McDonald

Abstract The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as WWTP effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering – over 1.1 million visitors and 7,100 farm animals – on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1, a marker for horizontal gene transfer), and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mobin Rezanejad ◽  
Sepideh Karimi ◽  
Hassan Momtaz

Abstract Background Trueperella pyogenes is one of the most clinically imperative bacteria responsible for severe cases of mastitis and metritis, particularly in postpartum dairy cows. The bacterium has emergence of antibiotic resistance and virulence characters. The existing research was done to apprise the phenotypic and genotypic evaluation of antibiotic resistance and characterization of virulence factors in the T. pyogenes bacteria of bovine mastitis and metritis in postpartum cows. Methods Two-hundred and twenty-six bovine mastitic milk and 172 uterine swabs were collected and transferred to laboratory. Samples were cultured and T. pyogenes isolates were subjected to disk diffusion and DNA extraction. Distribution of virulence and antibiotic resistance genes was studied by PCR. Results Thirty-two out of 226 (14.15%) mastitic milk and forty-one out of 172 (23.83%) uterine swab samples were positive for T. pyogenes. Isolates of mastitic milk harbored the highest prevalence of resistance toward gentamicin (100%), penicillin (100%), ampicillin (90.62%), amoxicillin (87.50%) and trimethoprim-sulfamethoxazole (87.50%), while those of metritis harbored the highest prevalence of resistance toward ampicillin (100%), amoxicillin (100%), gentamicin (97.56%), penicillin (97.56%) and cefalexin (97.56%). AacC, aadA1, aadA2 and tetW were the most generally perceived antibiotic resistance genes. All bacteria harbored plo (100%) and fimA (100%) virulence factors. NanP, nanH, fimC and fimE were also the most generally perceived virulence factors. Conclusions All bacteria harbored plo and fimA virulence factors which showed that they can use as specific genetic markers with their important roles in pathogenicity of T. pyogenes bacteria. Phenotypic pattern of antibiotic resistance was confirmed by genotypic characterization of antibiotic resistance genes.


2017 ◽  
Author(s):  
Sumayah F. Rahman ◽  
Matthew R. Olm ◽  
Michael J. Morowitz ◽  
Jillian F. Banfield

AbstractAntibiotic resistance in pathogens is extensively studied, yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leverage genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We find that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly,Clostridium difficilestrains harboring this gene are at higher abundance in formula-fed infants compared toC. difficilelacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have faster replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data into five principal components classified by boosted decision trees. Among the genes involved in predicting if an organism increased in relative abundance after treatment are those that encode for subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics and predict how organisms in the gut microbiome will respond to antibiotic administration.ImportanceThe process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows for unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document