Production of High Quality Fish Oil by Thermal Treatment and Enzymatic Protein Hydrolysis from Fresh Norwegian Spring Spawning Herring By-Products

2014 ◽  
Vol 24 (8) ◽  
pp. 807-823 ◽  
Author(s):  
Ana Carvajal ◽  
Rasa Slizyte ◽  
Ivar Storrø ◽  
Marit Aursand
Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2018 ◽  
Vol 41 (8) ◽  
pp. e12925
Author(s):  
Alice Maria Dahmer ◽  
Aline Andressa Rigo ◽  
Juliana Steffens ◽  
Clarice Steffens ◽  
Mercedes Concordia Carrão‐Panizzi

2017 ◽  
Vol 9 (29) ◽  
pp. 4247-4254 ◽  
Author(s):  
Sileshi Gizachew Wubshet ◽  
Ingrid Måge ◽  
Ulrike Böcker ◽  
Diana Lindberg ◽  
Svein Halvor Knutsen ◽  
...  

An FTIR-based multivariate approach is developed for monitoring molecular weight distribution during enzymatic protein hydrolysis of byproducts.


2004 ◽  
Vol 49 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S. Rio ◽  
C. Faur-Brasquet ◽  
L. Le Coq ◽  
D. Lecomte ◽  
P. Le Cloirec

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


2020 ◽  
Vol 10 (3) ◽  
pp. 998 ◽  
Author(s):  
Yuwu Sui ◽  
Chuping Ou ◽  
Shu Liu ◽  
Jinshuai Zhang ◽  
Qingbo Tian

Waste concrete must be crushed, screened, and ground in order to produce high-quality recycled aggregate. In this treatment process, 15–30% waste concrete powder (<0.125 mm) can be generated. Hydration activity and the reuse of waste concrete powders (WCPs) were studied in this work, and the results illustrated that the particle size changed after a series of thermal treatments at temperatures from 400 ℃ to 800 ℃. The particle size of waste concrete powder decreased by 700 ℃ thermal treatment, and by 600 ℃ thermal treatment, it increased. More active elements appeared in WCP heated by 800 ℃. Nevertheless, the activity index (AI) of WCP, measured by the ratio of mechanical strengths between mortar with a 30% replacement of the cement with WCP and normal mortar without WCP, indicated that the WCP by 700 ℃ thermal treatment had an optimal AI value, which meant WCP treated at 700 ℃ could be used in mortar or concrete as an admixture.


Author(s):  
Sileshi G. Wubshet ◽  
Diana Lindberg ◽  
Eva Veiseth-Kent ◽  
Kenneth A. Kristoffersen ◽  
Ulrike Böcker ◽  
...  

1980 ◽  
Vol 3 ◽  
pp. 85-90 ◽  
Author(s):  
I. H. Pike ◽  
I. N. Tatterson

Most of the by-products from fish go into the production of fish meal and fish oil, the latter going directly to the human food chain, and therefore do not really come under the heading of industrial by-products and waste per se. Broadly speaking, fish meal made from fish offal is a by-product which otherwise would have been wasted. This paper discusses the quantities involved and the nutritional properties offish meal, and in addition, the contribution to fish meal and fish oil made from species which are not suitable for human consumption (e.g. sandeels) or where the quantities caught exceed the demand for human consumption (e.g. sprats).Any method of utilizing fish by-products for animal feeding should minimize chemical changes in the product to avoid reduction in the nutrients which are present at the time of catching. In some respects chemical changes in fish by-products are brought about in a similar way to those in grass, cut for preservation. The fish material has a high water content, around 75%, and from the time of catching is subject to chemical changes by enzymes in the fish and also by bacterial action. Fish, however, differs from grass in that it contains oil and virtually no carbohydrates. The demersal, or lean fish, for example, cod, haddock, plaice, saithe, etc., contain high levels of oil in the liver which are removed for separate processing, but little in the flesh and in the offal produced. The ‘industrial’ fish caught are mainly pelagic species with high levels of oil in the flesh.


2009 ◽  
Vol 72 (4) ◽  
pp. 826-836 ◽  
Author(s):  
BERNHARD NOWAK ◽  
THEDA von MUEFFLING

The aim of this investigation was to develop a treatment for combined porcine blood corpuscle concentrate (BCC) and porcine collagenous connective tissue (rind) so as to make more use of these slaughter by-products as an ingredient in a high-quality product such as salami-type sausage. For this study, BCC was preserved, standardized (sBCC) (15% NaCl and 25% protein content), and then added (proportion of sBCC to rind, 15:85) to rind subjected to different treatments designated A, B, and C (A, 2 h at 90°C; B, 5 min at 90°C; and C, 2 h at 3°C). One half of each mixture was again heated (designated A1, B1, and C1; F70, ∼15), and the other half was only cooled (designated A2, B2, and C2). The now colored, highly proteinaceous rind mixtures (A1 to C2) were then cooled and granulated (designated GBR-A1 to GBR-C2). Three of the granulates (GBRA1, -B1, and -B2) proved to be promising new raw materials: their aerobic plate counts were &lt;log 4.0 CFU/g, and their color was appealing (L* values, 23.9 to 25.9; a* values, 17.7 to 22.2; b* values, 11.5 to 12.7). These granulates were then substituted for part (5%) of the meat in the production of fermented raw salami-type sausages. Two of the sausages (SA1 and SB1) were microbiologically stable (containing mainly lactobacilli) and had positive sensory, chemical, and physical properties (e.g., protein, 21%; water activity, 0.90; pH, between 5.3 and 5.4 on day 36) meeting all standards for commercially produced raw sausages. Our investigation yielded a practicable way to treat and combine two slaughter by-products for use in a high-quality meat product.


Sign in / Sign up

Export Citation Format

Share Document