LabView based virtual calorimetric etching solution analyzer (CESA) for the online quantification of hydrogen peroxide for the semiconductor industry

Author(s):  
Roumen Zlatev ◽  
Rogelio Ramos ◽  
Margarita Stoytcheva ◽  
Benjamín Valdez ◽  
Mario Curiel
2012 ◽  
Vol 217-219 ◽  
pp. 1141-1145 ◽  
Author(s):  
Wei Wang ◽  
Li Juan Zhao ◽  
Ping Xin Song ◽  
Ying Jiu Zhang

Assisted by Ag nanoparticles, Si substrates were etched in aqueous solutions containing hydrofluoric acid (HF) and hydrogen peroxide (H2O2) with different volumes of etching solution. The etching morphology of Si wafers was found to be affected by the volumes. In etching solutions with smaller volume, the pores were created; in etching solutions with larger volume, the nanostructure composed of nanowires and nanopores (pores+wires nanostructure) were generated. In addition, the lengths of these Si nanostructures increased with the increase of the etching volume. Possible formation mechanism for this phenomenon was discussed.


2010 ◽  
Vol 65 ◽  
pp. 251-256
Author(s):  
Huey Tze Ting ◽  
Khaled A. Abou-El-Hossein ◽  
Han Bing Chua

Machinable glass ceramic (MGC) is well known in the micro-electromechanical system and semiconductor industry. Chemical etching is used in this experiment to study the performance of MGC. The etching rate of MGC and its accuracy by indentation method is studied. The categoric parameter applied here is the type of chemical etchant used: hydrochloric (HCl), hydrophosphoric (H3PO4) and hydrobromic (HBr) acids; and, numerical parameters are etching temperature and etching solution. The experimental investigation that was carried out is governed by design of experiment (DoE).


2013 ◽  
Vol 284-287 ◽  
pp. 334-341
Author(s):  
Chun Ming Chang ◽  
Ming Hua Shiao ◽  
Don Yau Chiang ◽  
Chin Tien Yang ◽  
Mao Jung Huang ◽  
...  

In this study, the combined technologies of dual-layer photoresist complimentary lithography (DPCL), inductively coupled plasma-reactive ion etching (ICP-RIE) and laser direct-write lithography (LDL) are applied to produce the submicron patterns on sapphire substrates. The inorganic photoresist has almost no resistance for chlorine containing plasma and aqueous acid etching solution. However, the organic photoresist has high resistance for chlorine containing plasma and aqueous acid etching solution. Moreover, the inorganic photoresist is less etched by oxygen plasma etching process. The organic and inorganic photoresists deposit sequentially into a composite photoresist on a substrate. The DPCL takes advantages of the complementary chemical properties of organic and inorganic photoresists. We fabricated two structures with platform and non-platform structure. The non-platform structure featured structural openings, the top and bottom diameters and the depth are approximately 780 nm, 500 nm and 233 nm, respectively. The platform structure featured structural openings, the top and bottom diameters and the depth are approximately 487 nm, 288 nm and 203 nm, respectively. The precision submicron or nanoscale patterns of large etched area and patterns with high aspect ratio can be quickly produced by this technique. This technology features a low cost but high yield production technology. It has the potential applications in fabrication of micro-/nanostructures and devices for the optoelectronic industry, semiconductor industry and energy industry.


2021 ◽  
Author(s):  
Chun-Wen Lan ◽  
Subbiramaniyan Kubendhiran ◽  
Gavin Sison ◽  
Hsiao Ping Hsu

Abstract The concentrations of etchant solution substituents in metal assisted chemical etching (MACE) processes control the morphology and reflectivity of subsequently etched wafers. In particular, the concentration of hydrogen peroxide (H2O2) plays a vital role in the MACE process. Unfortunately, the H2O2 concentration is not stable when prolonging the etching process at higher temperatures. As a result, the commercialization of MACE processes for the production of IP texturization has appeared industrially unattractive. Herein, we proposed an innovative method to monitor hydrogen peroxide during the MACE process with an electrochemical method. Reduced graphene oxide (RGO) prepared through an environmentally benign electrochemical method was used to modify a screen-printed electrode (SPE). Under an optimized condition, the RGO/SPE was used to test etching solutions. The MACE process was conducted and the hydrogen peroxide concentration within the etching solution was checked by the RGO/SPE. The RGO/SPE demonstrated excellent electrochemical performance and could record changes to H2O2 concentrations with cyclic voltammetry (CV). Interestingly, the presence of copper (Cu) in the etching solution catalyzed not only the etching process, but also the electrochemical reduction of H2O2. After etching, the reflectivity and structural morphology of the etched wafers were checked. The described modified electrode is disposable, and the fabrication process is rapid and inexpensive, allowing for real time application in, and control of, MACE processes.


Author(s):  
George E. Childs ◽  
Joseph H. Miller

Biochemical and differential centrifugation studies have demonstrated that the oxidative enzymes of Acanthamoeba sp. are localized in mitochondria and peroxisomes (microbodies). Although hartmanellid amoebae have been the subject of several electron microscopic studies, peroxisomes have not been described from these organisms or other protozoa. Cytochemical tests employing diaminobenzidine-tetra HCl (DAB) and hydrogen peroxide were used for the ultrastructural localization of peroxidases of trophozoites of Hartmanella sp. (A-l, Culbertson), a pathogenic strain grown in axenic cultures of trypticase soy broth.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


Sign in / Sign up

Export Citation Format

Share Document