scholarly journals Synergistic antimicrobial action of phyco-synthesized silver nanoparticles and nano-fungal chitosan composites against drug resistant bacterial pathogens

2020 ◽  
Vol 34 (1) ◽  
pp. 631-639
Author(s):  
Mohammed S. Alsaggaf ◽  
Ahmed A. Tayel ◽  
Mousa A. Alghuthaymi ◽  
Shaaban H. Moussa
2020 ◽  
Vol 21 (3) ◽  
pp. 206-218 ◽  
Author(s):  
Sadia Nazer ◽  
Saiqa Andleeb ◽  
Shaukat Ali ◽  
Nazia Gulzar ◽  
Tariq Iqbal ◽  
...  

Background: Multi-drug resistance in bacterial pathogens is a major concern of today. Green synthesis technology is being used to cure infectious diseases. Objectives: The aim of the current research was to analyze the antibacterial, antioxidant, and phytochemical screening of green synthesized silver nanoparticles using Ajuga bracteosa. Methods: Extract of A. bracteosa was prepared by maceration technique. Silver nanoparticles were synthesized using A. bracteosa extract and were confirmed by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The antibacterial, anti-biofilm, cell proliferation inhibition, TLC-Bioautography, TLC-Spot screening, antioxidant, and phytochemical screening were also investigated. Results: UV-Vis spectrum and Scanning electron microscopy confirmed the synthesis of green nanoparticles at 400 nm with tube-like structures. FTIR spectrum showed that functional groups of nanoparticles have a role in capping and stability of AgNP. Agar well diffusion assay represented the maximum antibacterial effect of ABAgNPs against Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas aeruginosa at 0.10 g/mL concentration compared to ABaqu. Two types of interactions among nanoparticles, aqueous extract, and antibiotics (Synergistic and additive) were recorded against tested pathogens. Crystal violet, MTT, TLC-bio-autography, and spot screening supported the findings of the antibacterial assay. Highest antioxidant potential effect in ABaqu was 14.62% (DPPH) and 13.64% (ABTS) while 4.85% (DPPH) and 4.86% (ABTS) was recorded in ABAgNPs. Presence of phytochemical constituents showed pharmacological importance. Conclusion: It was concluded that green synthesis is an innovative technology in which natural products are conjugated with metallic particles and are used against infectious pathogens. The current research showed the significant use of green nanoparticles against etiological agents.


2020 ◽  
Vol 21 (24) ◽  
pp. 9746
Author(s):  
Shahina Akter ◽  
Sun-Young Lee ◽  
Muhammad Zubair Siddiqi ◽  
Sri Renukadevi Balusamy ◽  
Md. Ashrafudoulla ◽  
...  

It is essential to develop and discover alternative eco-friendly antibacterial agents due to the emergence of multi-drug-resistant microorganisms. In this study, we isolated and characterized a novel bacterium named Terrabacter humi MAHUQ-38T, utilized for the eco-friendly synthesis of silver nanoparticles (AgNPs) and the synthesized AgNPs were used to control multi-drug-resistant microorganisms. The novel strain was Gram stain positive, strictly aerobic, milky white colored, rod shaped and non-motile. The optimal growth temperature, pH and NaCl concentration were 30 °C, 6.5 and 0%, respectively. Based on 16S rRNA gene sequence, strain MAHUQ-38T belongs to the genus Terrabacter and is most closely related to several Terrabacter type strains (98.2%–98.8%). Terrabacter humi MAHUQ-38T had a genome of 5,156,829 bp long (19 contigs) with 4555 protein-coding genes, 48 tRNA and 5 rRNA genes. The culture supernatant of strain MAHUQ-38T was used for the eco-friendly and facile synthesis of AgNPs. The transmission electron microscopy (TEM) image showed the spherical shape of AgNPs with a size of 6 to 24 nm, and the Fourier transform infrared (FTIR) analysis revealed the functional groups responsible for the synthesis of AgNPs. The synthesized AgNPs exhibited strong anti-bacterial activity against multi-drug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 6.25/50 and 12.5/50 μg/mL, respectively. The AgNPs altered the cell morphology and damaged the cell membrane of pathogens. This study encourages the use of Terrabacter humi for the ecofriendly synthesis of AgNPs to control multi-drug-resistant microorganisms.


2018 ◽  
Vol 14 (2) ◽  
pp. 601-607 ◽  
Author(s):  
Valerie Aurore ◽  
Fabienne Caldana ◽  
Marianne Blanchard ◽  
Solange Kharoubi Hess ◽  
Nils Lannes ◽  
...  

Author(s):  
Perumal G

The present study was isolate Bacterial pathogens form Urinary Tract Infection and identified the Bacterial pathogens from UTI patients. Determination of the antibiotic drug resistant pattern of the isolated pathogenic bacteria using standard antibiotic discs Ampicilin (25μg), Erithromycin (15μg), Chloramphenicol (10μg) Gentamicin (10μg) and Tetracycline (30 μg).The study was carried out, in vitro screening of ethanolic extracts of some medicinal plants against the bacterial pathogens Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Pseudomonas aeruginosawere isolate from the UTI. When compared with standard antibiotic disc selected plants extracts were showed maximum zone of inhibition against all the pathogens. This investigation strongly recommends that phytochemical studies are required to determine the types of compounds responsible for the antibacterial effect of these medicinal plants. Key words: Bacterial pathogens, Antibiotic drug resistant pattern and Medicinal plants


Sign in / Sign up

Export Citation Format

Share Document