scholarly journals Productivity, fuel consumption and cost in whole tree cable yarding: conventional diesel carriage versus electrical energy-recuperating carriage

Author(s):  
Thomas Varch ◽  
Gernot Erber ◽  
Raffaele Spinelli ◽  
Natascia Magagnotti ◽  
Karl Stampfer
2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jaewook Shin ◽  
Haksu Kim ◽  
Seungeon Baek ◽  
Myoungho Sunwoo ◽  
Manbae Han

AbstractThe market concern of improvement of vehicle safety and its convenience to drive a vehicle has resulted in the growth of the demand for vehicular electronic equipment. This trend requires additional power in the vehicle and thus makes prone to the increase of fuel consumption for vehicles equipped with internal combustion engines. To minimize this fuel consumption, an efficient energy management (EM) strategy for the electrical system of alternator and battery is required. This paper proposes a successful EM strategy based on the rule-based alternator control using predictive information. The proposed strategy reduces fuel consumption by charging batteries using the residual kinetic energy during deceleration. In particular, we predict electrical energy that is recovered by the residual energy using a Markov chain-based velocity prediction algorithm. The accommodation of predicted electrical energy and current vehicle information determines one of the three predefined control modes, such as charge, hold, and discharge, depending on vehicle driving states. This control mode determines the power generation from the alternator and controls the amount of torque to the vehicle electrical system. The proposed strategy is verified through simulation and experiment. The simulation with the new EM strategy is validated as comparing the operation difference with a conventional proportional-integral (PI) control algorithm under the same driver behaviors. Further validation in real vehicle driving experiment shows that fuel consumption was reduced by 2.1% compared to the conventional PI control algorithm.


2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


At this stage of the development of vehicles with a combined power plant, one of the areas of development is the study of the introduction of a low-power gas turbine engine, the so-called microturbine, as a converter of thermal energy into mechanical. This solution has numerous positive aspects related to its fuel consumption, small dimensions, high efficiency, as well as a number of performance indicators. In this case, the vehicle is also equipped with a high-speed generator with the goal of converting the mechanical energy of the microturbine into electrical energy. This ensures the microturbine operation in a given range on the characteristic of optimal fuel consumption. The article contains an analysis of the use of microturbine generators in vehicles; some constructive solutions are considered as well. An overview of vehicles with microturbine generators and their comparison with traditional internal combustion engines is given. The movement of the vehicle is carried out by one or several traction motors. More than ten developments of motor vehicles using the microturbine as an additional source of energy for vehicles with traction electric drive are already known in the world, including MiTRE (Microturbine Range Extender). Among such vehicles, one can name the Trolza "Ecobus" buses, Delta Hypercar supercar, Isuzu NPR trucks, Mack Truck, Kenworth.


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Raffaele Spinelli ◽  
Natascia Magagnotti ◽  
Giulio Cosola ◽  
Eric R. Labelle ◽  
Rien Visser ◽  
...  

Cable yarding is a well establish technology for the extraction of timber in steep terrain. However, it is encumbered with relatively low productivity and high costs, and as such this technology needs to adapt and progress to remain viable. The development of biomass as a valuable byproduct, and the availability of processors to support yarder operations, lend themselves to increasing the level of whole-tree extraction. Double-hitch carriages have been developed to allow for full suspension of whole-tree and tree-length material. This study compared a standard single-hitch to a double-hitch carriage under controlled conditions, namely in the same location using the same yarder with downhill extraction. As expected, the double-hitch carriage took longer to load up (+14%), but was able to achieve similar productivity (10–11 m3 per productive machine hour) through increased inhaul speed (+15%). The importance of this study is that it demonstrates both the physical and economic feasibility of moving to whole-tree extraction using the double-hitch type carriage for longer corridors, for settings with limited deflection, or areas with lower tolerance for soil disturbance.


Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 8-13
Author(s):  
Bayu Setyo Wibowo ◽  
Susatyo Handoko ◽  
Hermawan Hermawan

Electricity is one of the energies required by daily living since the greater demand for electricity increases greenhouse emissions that create emission gases resulting in global climate change. The main portion of the output cost is fuel's cost to manufacture electrical energy in thermal turbines. The use of electrical energy is currently rising increasingly following the increasing population. The research aims to optimize hydro generation to minimize thermal generation expense and address economic problems and pollution from shipping. With 2016b using Matlab applications and the lambda iteration process, the analysis method uses the Dragonfly Algorithm method. The analysis found that the average cost of fuel consumption provided by the Dragonfly Algorithm method was IDR 151,164,418 per day with an emission of 917.40 tons per day, based on the simulation results the Dragonfly Algorithm in testing by considering the emission of 5 practical steps. Meanwhile, with the emission of 918,044 tonnes per day, the average cost of fuel consumption produced by the Lambda Iteration method is IDR 151,202,209 per day. Test results can enhance the fuel consumption cost of IDR 37,791 and emissions of 0.641 tons with the Dragonfly Algorithm process.


Author(s):  
Yu. A. Gudim ◽  
I. Yu. Zinurov ◽  
V. Z. Fel’dman

Toughening of ecological requirements to metallurgical production and economic factors, stipulated by competitiveness at the metal products market, increased actuality of utilization of slags, sludges and dust, obtained in steelmaking. It was shown, that from the economic point of view, processing of slags obtained at operation of modern ultra-powerful electric arc furnaces (EAF), is the item of highest interest. At present, their processing is restricted often by maximum possible recovery of metallic inclusions. At that the problem of utilization slag remains, dust and sludges remains unsolved. A pyrometallurgical method of electric steelmaking slags processing in EAF was considered. The process involves application of liquid phase reducing of metal oxides and correction of slag composition aimed at obtaining cast slag marketable products and clinker for cement industry. Data of test heats for slags utilization at the 5-ton EAF presented. The proposed technology enables to make industrial scale processing of slags with obtaining cast iron and melted clinker. Taking into consideration that EAF coefficient of efficiency, accounting fuel consumption for electrical energy obtaining is not high and is 23–24%, it was proposed to do slags processing in fuel-melting aggregates, in which the efficiency of primary energy utilization is higher (efficiency coefficient is 25–40%). The firm OJSC NTP “Akont” developed a technical project of a fuel-melting aggregate “MAGMA-1” for processing electric steelmaking slags. Its basic technical data and performance indices presented. It was shown that additional decrease of fuel consumption can be provided at utilization of liquid slag tapped out of EAF in a course of a heat, as well as at charge heating in a tubular rotating heater by waste gases.


1998 ◽  
Vol 78 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Mark Johnston ◽  
Julie Elliott

The Boreal Mixedwood Ecosystem Study near Thunder Bay, Ontario is a multi-disciplinary investigation of the impacts of harvesting and fire on the structure and function of a boreal mixed-wood ecosystem. The fire component comprises a set of treatments in which fire severity was manipulated by adjusting fuel loadings through a variety of harvesting techniques, and also included fire in standing timber. Intensive fuel sampling before and after the fire enabled detailed determinations of fuel consumption, heat output and forest floor reduction. Nutrient concentrations in ash, soil, and plant tissue following the fire were compared with fire severity in order to quantify potential nutrient inputs and their relationship to the amount of biomass consumed during the fire. Forest floor and woody fuel consumption varied significantly among treatments, with the most important factor being whether or not the stand had been harvested previous to the fire. The pH was highest and P concentrations among the lowest in the ash of unharvested blocks. Nutrient concentrations of the remaining forest floor and upper mineral soil were weakly related to the treatments. Forest floor P concentrations were highest on whole-tree harvested and lowest on uncut blocks. Whole-tree harvested blocks also had the highest pH values in forest floor and mineral soil. Concentrations of N, P, and Mg in the foliage of Populus tremuloides Michx. and Rubus idaeus L. were higher on unharvested burned than cut and burned plots, and were negatively correlated with the depth of forest floor reduction. These results indicate that fire severity plays a role in determining the extent of nutrient enrichment following fire, and may be important in influencing long-term site productivity. Key words: Fire severity, forest fire, nutrient cycles, soil chemistry, fire ecology


2021 ◽  
Vol 52 (3) ◽  
Author(s):  
Alberto Cadei ◽  
Omar Mologni ◽  
Luca Marchi ◽  
Francesco Sforza ◽  
Dominik Röser ◽  
...  

In order to reduce greenhouse gas emissions, low emission or zero-emission technologies have been applied to light and heavyduty vehicles by adopting electric propulsion systems and battery energy storage. Hybrid cable yarders and electrical slack-pulling carriages could represent an opportunity to increase the energy efficiency of forestry operations leading to lower impact timber harvesting and economic savings thanks to reduced fuel consumption. However, given the limited experience with hybrid-electric systems applied to cable yarding operations, these assumptions remain uncertain. This study assessed an uphill cable yarding operation using a hybrid cable yarder and an active slack-pulling electric power carriage over thirty working days. A total of 915 work cycles on four different cable lines were analysed. Longterm monitoring using Can-BUS data and direct field observations were used to evaluate the total energy efficiency, total energy efficiency (%), and fuel consumption per unit of timber extracted (L/m3). The use of the electric-hybrid system with a 700 V supercapacitor to store the recovered energy made it possible to reduce the running time of the engine by about 38% of the total working time. However, only 35% to 41% of the Diesel-based mechanical energy was consumed by the mainline and haulback winches. Indeed, the remaining energy was consumed by the other winches of the cable line system (skyline, strawline winches and carriage recharging or breaking during outhaul) or dissipated by the system (e.g., by the haulback blocks). With reference to all work cycles, the highest net energy consumption occurred during the inhaulunload work element with a maximum of 1.15 kWh, consuming 70% of total net energy consumption to complete a work cycle. In contrast, lower energy consumption was recorded for lateral skid and outhaul, recording a maximum of 23% and 32% of the total net energy consumption, respectively. The estimated recovered energy, on average between the four cable lines, was 2.56 kWh. Therefore, the reduced fuel need was assessed to be approximately 730 L of fuel in the 212.5 PMH15 of observation, for a total emissions reduction of 1907 kg CO2 eq, 2.08 kg CO2 eq for each work cycle.


2008 ◽  
Vol 3 (1) ◽  
pp. 4-9 ◽  
Author(s):  
Wolfgang Reimann ◽  
Ralf Männel

Sign in / Sign up

Export Citation Format

Share Document