In vivo toxicogenic potential of Salix alba (Salicaceae) bark extract

Author(s):  
Edson Luis Maistro ◽  
Peterson Menezes Terrazzas ◽  
Alexandra Christinie Helena Frankland Sawaya ◽  
Paulo Cesar Pires Rosa ◽  
Fábio Ferreira Perazzo ◽  
...  
Keyword(s):  
Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 681
Author(s):  
Gugulethu P. Khumalo ◽  
Nicholas J. Sadgrove ◽  
Sandy F. Van Vuuren ◽  
Ben-Erik Van Wyk

Indigenous trade of medicinal plants in South Africa is a multi-million-rand industry and is still highly relevant in terms of primary health care. The purpose of this study was to identify today’s most traded medicinal barks, traditionally and contemporaneously used for dermatological, gastrointestinal, and respiratory tract infections; then, to investigate the antimicrobial activity and toxicity of the respective extracts and interpret outcomes in light of pharmacokinetics. Thirty-one popularly traded medicinal barks were purchased from the Faraday and Kwa Mai-Mai markets in Johannesburg, South Africa. Information on the medicinal uses of bark-based medicines in modern commerce was recorded from randomly selected traders. The minimum inhibitory concentration (MIC) method was used for antimicrobial screening, and brine shrimp lethality was used to determine toxicity. New medicinal uses were recorded for 14 bark species. Plants demonstrating some broad-spectrum activities against tested bacteria include Elaeodendron transvaalense, Erythrina lysistemon, Garcinia livingstonei, Pterocelastrus rostratus, Rapanea melanophloeos, Schotia brachypetala, Sclerocarya birrea, and Ziziphus mucronata. The lowest MIC value of 0.004 mg/mL was observed against Staphylococcus epidermidis for a dichloromethane bark extract of E. lysistemon. The tested medicinal barks were shown to be non-toxic against the Artemia nauplii (brine shrimp) bioassay, except for a methanol extract from Trichilia emetica (69.52% mortality). Bacterial inhibition of bark extracts with minimal associated toxicity is consistent with the safety and valuable use of medicinal barks for local muthi market customers. Antimicrobial outcomes against skin and gastrointestinal pathogens are feasible because mere contact-inhibition is required in vivo; however, MIC values against respiratory pathogens require further explaining from a pharmacokinetics or pharmacodynamics perspective, particularly for ingested rather than smoked therapies.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


2020 ◽  
Vol 4 (3) ◽  
pp. 247-251
Author(s):  
Z. Abdullahi ◽  
A. A. Jimoh ◽  
B. E. Patrick ◽  
M. I. Yakubu ◽  
D. Mallam

Different parts of Vitellaria paradoxa plant have many applications in ethno-medicine. Some of the uses of this plant include treatment of diarrhoea and other GIT disorders. In this study the antidiarrhoeal activity of the ethanol extract of Vitellaria paradoxa was evaluated using three experimental models: Castor oil-induced diarrhoea; small intestinal motility and intestinal fluid accumulation (enteropooling) models in mice. Five groups of five mice were used for each model. Group one mice received 10 ml/kg of distilled water, while groups 2, 3, and 4 received 125, 250 and 500 mg/kg of the extract orally respectively. Group 5 mice received Loperamide 5 mg/kg orally. Oral median lethal dose (LD50) of the extract was determined using OECD (2008) Guideline 425. Phytochemical studies were conducted using standard procedures. The LD50 was estimated to be greater than 5000 mg/kg body weight and there were no signs of mortality or visible signs of toxicity in all the mice treated. Phytochemical screening revealed the presence of carbohydrates, alkaloids, flavonoids, saponins, tannins, triterpenes, steroids, cardiac glycosides and anthraquinones glycosides. Extract showed a dose-dependent anti-diarrhoeal activity by reducing stool frequency and consistency. The extract at the higher doses significantly (p < 0.05) inhibited GIT motility and castor oil-induced enteropooling, comparable to that of the reference control drug Loperamide. The study showed that ethanol stem bark extract of Vitellaria paradoxa possess anti-diarrhoeal activity and thus justifies its ethno-medicinal use in the treatment of diarrhoea.


2018 ◽  
Vol 7 (4) ◽  
pp. 392-398
Author(s):  
B.T Yunana ◽  
◽  
B. B Bukar ◽  
J. C Aguiyi ◽  
◽  
...  

The ethanol extracts of root, bark and leaf of Bridelia ferruginea was investigated for antibacterial activity against clinical isolate of Staphylococcus aureus and Escherichia coli. The extracts had significant antibacterial activity in vitro at concentration of 25 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml and in vivo at dose of 50 mg/kg and 100 mg/kg. The root extract in vitro had the highest zone of inhibition, followed by the bark extract for both Staphylococcus aureus and Escherichia coli. The concentration of 200 mg/ml had the highest zone of inhibition in vitro. The minimum inhibitory concentration (MIC) showed a decreasing inhibitory effect of the plant extracts for both Staphylococcus aureus and Escherichia coli as the concentration decreases with root having 3.125 mg/ml, bark having 6.25 mg/ml and leaf having 25 mg/ml for Staphylococcus aureus and Escherichia coli. Likewise, the minimum bactericidal concentration (MBC) showed decreasing bactericide effects with decrease concentration with root having 12.5 mg/ml, bark having 12.5 mg/ml and leaf having 25 mg/ml for Escherichia coli while root had 6.25mg/ml, bark had 12.5mg/ml and leaf had 25mg/ml for Staphylococcus aureus. The in vivo investigation showed that the root and bark extract exhibited antibacterial activity on both Staphylococcus aureus and Escherichia coli at doses of 100mg/kg and 50mg/kg; the root extract had higher activity than the bark and root/bark combined. The dose of 100 mg/kg had the highest colonies reduction for Staphylococcus aureus and Escherichia coli in vivo. Preliminary phytochemical screening of root, bark and leaves of Bridelia ferruginea revealed the presence of tannins, flavonoids, carbohydrates, cardiac glycoside (root, bark and leaves), saponins (root and bark). The presence of tannins, saponins, flavonoid, cardiac glycoside and carbohydrate in the bark and root extracts of the plant indicates that the bark and root extracts were pharmacological importance


2016 ◽  
Vol 291 ◽  
pp. 66-74 ◽  
Author(s):  
Thaisa Baccarin ◽  
Aline Debrassi ◽  
Márcia M. de Souza ◽  
Rosendo A. Yunes ◽  
Ângela Malheiros ◽  
...  

1990 ◽  
Vol 29 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Tanon Benie ◽  
Asmahan el Izzi ◽  
Claudine Tahiri ◽  
Jacques Duval ◽  
Marie-Lise Thieulant

Author(s):  
SUPRIYA RAJA H

Objective: Knema attenuata (Myristicaceae), popularly known as “wild nutmeg,” is an endemic tree species from Western Ghats, which has been used in folk medicine. Conventionally, the stem bark of K. attenuata is used for treating inflammatory conditions without any scientific information available for the same. The present study was undertaken to evaluate the anti-inflammatory activity of the ethanolic stem bark extract (ESBE) of K. attenuata using in vivo and in vitro screening models. Methods: The ethanolic extract of stem bark was prepared by soxhlation, and its cytotoxicity in RAW 264.7 cell line was assessed using MTT assay method. In vivo anti-inflammatory effect of extract was estimated in rats using carrageenan-induced paw edema model and cotton pellet-induced granuloma model. The in vitro anti-inflammatory activity of the extract was evaluated by cyclooxygenase and lipoxygenase inhibition assay, estimation of myeloperoxidase activity, and determination of cellular nitrite levels in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Results: Toxic symptoms were not observed for the ESBE. The extract demonstrated significant anti-inflammatory activity in both in vivo and in vitro models. The anti-inflammatory action exhibited by the extract was a result of the inhibition of leukocyte migration and nitric oxide pathway and partially by inhibition of mediators such as prostaglandins and leukotrienes. Conclusion: Findings from the study provide the evidence for the popular use of stem bark extract of K. attenuata as a potential anti-inflammatory agent.


2015 ◽  
Vol 61 (2) ◽  
pp. 50-62
Author(s):  
P.A. Onyeyili ◽  
K. Aliyoo

Summary The control of trypanosomosis in animals and humans based on chemotherapy is limited and not ideal, since the agents used are associated with severe side effects, and emergence of relapse and drug resistant parasites. The need for the development of new, cheap and safe compounds stimulated this study. Three concentrations (211, 21.1 and 2.11 mg per ml) of chloroform stem bark extract of Annona muricata were screened for trypanocidal activity against Trypanosoma brucei brucei in vitro. Also, two doses (200 mg per kg and 100 mg per kg) of the extract were evaluated for trypanocidal activity in rats infected with the parasite. Haematological parameters were determined on day 1 post infection and on days 1, 6 and 30-post extract treatment. The extracts inhibited parasite motility and totally eliminated the organisms at the concentrations used in vitro. The extract also showed promising in vivo trypanocidal activity. The observed in vitro and in vivo trypanocidal activities may be due to the presence of bioactive compounds present in the extracts as seen in this study. The extract also improved the observed decreases in haematological parameters of the treated rats, which may be due to their ability to decrease parasite load. The observed oral LD50 of 1,725.05 mg per kg of the chloroform A. muricata extract using up and down method is an indication of very low toxicity, implying that the extract could be administered with some degree of safety.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2765
Author(s):  
Christian Kraus ◽  
Rada Abou-Ammar ◽  
Andreas Schubert ◽  
Michael Fischer

In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse effects on the ecosystem. Therefore, alternative, organic fungicides against Downy Mildew are urgently needed to reduce the copper load in vineyards. In this study, the use of Warburgia ugandensis Sprague (Family Canellacea) leaf and bark extracts as potential fungicides against Downy Mildew were evaluated. In vitro (microtiter) and in vivo (leaf discs, seedlings) tests were conducted, as well as field trials to determine the efficacy of the extracts against Downy Mildew. The results revealed an MIC100 of 500 µg/mL for the leaf extract and 5 µg/mL for the bark extract. Furthermore, experiments with leaf discs and seedlings demonstrated a strong protective effect of the extracts for up to 48 h under (semi-) controlled conditions. However, in field trials the efficacy of the extracts distinctly declined, regardless of the extracts’ origin and concentration.


Sign in / Sign up

Export Citation Format

Share Document