Mechanical response and auxetic properties of composite double-arrow corrugated sandwich panels with defects

Author(s):  
Zhen-Yu Li ◽  
Xin-Tao Wang ◽  
Jin-Shui Yang ◽  
Shuang Li ◽  
Kai-Uwe Schröder
2011 ◽  
Vol 261-263 ◽  
pp. 770-774
Author(s):  
Dong Ruan ◽  
Mohd Azman Yahaya ◽  
James Hicks ◽  
Jayson Lloyd ◽  
Feng Zhu

Sandwich panels consisting of two aluminium two face-sheets and a core made of aluminium honeycomb were studied in this paper. These sandwich panels are good candidates for cladding systems employed to protect other structures again blast loadings. In this paper, the mechanical response and deformation of these sandwich panels subjected to simulated blast loadings are investigated experimentally. The effects of impact pulse, foil thickness and cell size of aluminium honeycombs have been discussed.


2018 ◽  
Vol 203 ◽  
pp. 539-550 ◽  
Author(s):  
Li Ma ◽  
Yun-Long Chen ◽  
Jin-Shui Yang ◽  
Xin-Tao Wang ◽  
Guo-Lin Ma ◽  
...  

Author(s):  
Wenke Lu ◽  
Junyan Zhang

Abstract This study investigates the mechanical response of aluminum foam sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under impact loads. First, a finite element model of the sandwich panel was established, and an impact load was applied. The numerical results were compared with theoretical and experimental results to verify the model's effectiveness. Second, the energy absorption efficiency and overall deformation of sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under the same impact load were studied. The research shows that the energy absorption performance of the sandwich shells is better than that of the sandwich panels, and the overall deformation is less than that of the sandwich panels. The effect of increasing panel thickness on the two types of sandwich shell studies is based on this basis. The conclusions describe that increasing the panel thickness will significantly reduce the structure's energy absorption efficiency and deformation. Finally, the effect of single-and double-layer structure on the impact resistance of sandwich shells was studied when the total thickness of the sandwich structure was unchanged. The results show that compared with the single-layer structure, the energy absorption efficiency, overall deformation, and contact force between the projectile and structure of the double-layer structure will be reduced.


2020 ◽  
pp. 109963622092765 ◽  
Author(s):  
Fukun Xia ◽  
Yvonne Durandet ◽  
T X Yu ◽  
Dong Ruan

Corrugated sandwich panels are widely used in engineering applications for their excellent energy absorption and lightweight. In this research, the mechanical response of aluminum corrugated sandwich panels subjected to three-point bending is investigated experimentally, numerically, and theoretically. In the experiments, the sandwich panels were loaded under two conditions, namely base indentation and node indentation. A parametric study is conducted by ABAQUS/explicit to investigate the effects of geometric configurations (corrugation angle, core height, and core thickness) on the deformation mode, peak force, and energy absorption. Both peak force and specific energy absorption vary with the geometric parameters. Theoretical models are further developed to predict the force–displacement curves of the panels under the two loading conditions. The theoretically predicted crushing force is in good agreement with both the experimental and simulated results. Finally, the non-dominated sorting genetic algorithm II is adopted to optimize the geometric configuration to improve the specific energy absorption and reduce the weight of corrugated sandwich panels.


2018 ◽  
Vol 22 (7) ◽  
pp. 2421-2444
Author(s):  
Guangtao Wei ◽  
Lijia Feng ◽  
Linzhi Wu

A new theoretical model based on the extended high order sandwich panel theory is established to predict the mechanical response of sandwich panels under static loads with the bilinear constitutive stress–strain relation in the core. The constitutive relations of normal stresses related to the longitudinal and vertical normal strains in the bilinear isotropic hardening core are first formulated. The influence of the in-plane rigidity on the elastoplastic response of sandwich structures is analyzed. An in-plane loaded sandwich structure with the bilinear core is first studied based on extended high order sandwich panel theory, and the effect of the bilinear ratio on the mechanical response is evaluated. The governing equations are derived from the principle of minimum potential energy, and a Ritz-based half-analytical method is applied to get the solutions. The plastic response is acquired by an iterative procedure along with the convergence criteria. The results reveal that the local effect can be captured when the axial rigidity of the core is considered. The bilinear characteristic of the core decreases the maximum normal stress with an increase of the average value. The equivalent plastic region extends with the increase of the bilinear ratio when the sandwich structure is loaded in plane. By comparison with open literatures and finite element results, the present theoretical model is proved to be effective and efficient.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012046
Author(s):  
S P Zaoutsos

Abstract The use of aluminium sandwich panels has been increased in a certain number of engineering applications from infrastructure systems and transportation to aircraft and naval engineering. Due to their structural efficiency these materials are ideal for applications where ratio of strength to weight is of crucial importance. In the current study the investigation of the strength characteristics of aluminium sandwich panels with aluminium honeycomb core and different types of skins is performed using both analytical models and experimental procedures. A series of strength tests such as tension, shear, three point bending and double cantilever beam were conducted on aluminium honeycomb-cored sandwich panel specimens with five different skins in order to examine the mode of failure and the mechanical behaviour of the structural elements. The experimental findings are compared to theoretical values while an attempt for the explanation of the mechanisms leading to failure such as buckling, delamination or debonding between core and skins is performed. The results occurring from the study are very useful for the enhancement of the mechanical behaviour of sandwich constructions, thus more intensive work must be carried out in order to understand the physical mechanisms leading to strength characteristics of sandwich panels.


2020 ◽  
pp. 109963622093614 ◽  
Author(s):  
Robert Studziński

The paper presents experimental studies of the use of blind rivets (one side connection/blind connection) in sandwich panels with polyisocyanurate foam core. The laboratory pull-out tests of the rivets from the panel facing involved two types of blind rivets (with three and four clamping arms), two types of the sandwich panel facing material (steel and laminate) and an occurrence or lack of a primer layer, which is applied between the external facing and the polyisocyanurate foam during its emerging. As a result of the laboratory tests the mechanical characteristics of the varied types of the blind connections (the equilibrium load paths, the initial and the elastic stiffnesses, the elastic and the ultimate capacity, and the ductility) as well as the failure mechanisms were obtained. The provided research data was used to verify the finite element 3D model created in the Abaqus\CAE environment. This numerical model correctly predicts the results of laboratory tests in the elastic range of the mechanical response of the blind connection with steel facing.


Sign in / Sign up

Export Citation Format

Share Document