scholarly journals RNA-seq reveals that multiple plant hormones are regulated by Bacillus cereus G2 in Glycyrrhiza uralensis subjected to salt stress

2021 ◽  
Vol 16 (1) ◽  
pp. 591-603
Author(s):  
Xiang Xiao ◽  
Qiuli Wang ◽  
Duoyong Lang ◽  
Yuankui Chu ◽  
Yu Zhang ◽  
...  
2022 ◽  
Vol 12 ◽  
Author(s):  
Xiang Xiao ◽  
Qiuli Wang ◽  
Xin Ma ◽  
Duoyong Lang ◽  
Zhenggang Guo ◽  
...  

Salt stress severely threatens the growth and productivity of Glycyrrhiza uralensis. Previous results found that Bacillus cereus G2 enhanced several carbohydrate contents in G. uralensis under salt stress. Here, we analyzed the changes in parameters related to growth, photosynthesis, carbohydrate transformation, and the glycolysis Embden-Meyerhof-Parnas (EMP) pathway-tricarboxylic acid (TCA) cycle by G2 in G. uralensis under salt stress. Results showed that G2 helped G. uralensis-accumulating photosynthetic pigments during photosynthesis, which could further increase starch, sucrose, and fructose contents during carbohydrate transformation. Specifically, increased soluble starch synthase (SSS) activity caused to higher starch content, which could induce α-amylase (AM) and β-amylase (BM) activities; increased sucrose content due to the increase of sucrose synthase (SS) activity through upregulating the gene-encoding SS, which decreased cell osmotic potential, and consequently, induced invertase and gene-encoding α-glucosidase that decomposed sucrose to fructose, ultimately avoided further water loss; increased fructose content-required highly hexokinase (HK) activity to phosphorylate in G. uralensis, thereby providing sufficient substrate for EMP. However, G2 decreased phosphofructokinase (PFK) and pyruvate kinase (PK) activities during EMP. For inducing the TCA cycle to produce more energy, G2 increased PDH activity that enhanced CA content, which further increased isocitrate dehydrogenase (ICDH) activity and provided intermediate products for the G. uralensis TCA cycle under salt stress. In sum, G2 could improve photosynthetic efficiency and carbohydrate transformation to enhance carbohydrate products, thereby releasing more chemical energy stored in carbohydrates through the EMP pathway-TCA cycle, finally maintain normal life activities, and promote the growth of G. uralensis under salt stress.


2021 ◽  
Vol 22 (1) ◽  
pp. 454
Author(s):  
Jun Wang ◽  
Xiao Fang Wu ◽  
Yong Tang ◽  
Jian Guo Li ◽  
Ming Lei Zhao

Fruit cracking is a disorder of fruit development in response to internal or external cues, which causes a loss in the economic value of fruit. Therefore, exploring the mechanism underlying fruit cracking is of great significance to increase the economic yield of fruit trees. However, the molecular mechanism underlying fruit cracking is still poorly understood. Litchi, as an important tropical and subtropical fruit crop, contributes significantly to the gross agricultural product in Southeast Asia. One important agricultural concern in the litchi industry is that some famous varieties with high economic value such as ‘Nuomici’ are susceptible to fruit cracking. Here, the cracking-susceptible cultivar ‘Nuomici’ and cracking-resistant cultivar ‘Huaizhi’ were selected, and the samples including pericarp and aril during fruit development and cracking were collected for RNA-Seq analysis. Based on weighted gene co-expression network analysis (WGCNA) and the “ball-skin versus bladder effect” theory (fruit cracking occurs upon the aril expanding pressure exceeds the pericarp strength), it was found that seven co-expression modules genes (1733 candidate genes) were closely associated with fruit cracking in ‘Nuomici’. Importantly, we propose that the low expression level of genes related to plant hormones (Auxin, Gibberellins, Ethylene), transcription factors, calcium transport and signaling, and lipid synthesis might decrease the mechanical strength of pericarp in ‘Nuomici’, while high expression level of genes associated with plant hormones (Auxin and abscisic acid), transcription factors, starch/sucrose metabolism, and sugar/water transport might increase the aril expanding pressure, thereby resulting in fruit cracking in ‘Nuomici’. In conclusion, our results provide comprehensive molecular events involved in the “ball-skin versus bladder effect” on fruit cracking in litchi.


2015 ◽  
Vol 58 (3) ◽  
pp. 147-155 ◽  
Author(s):  
Hojin Ryu ◽  
Yong-Gu Cho

2020 ◽  
Author(s):  
Jianjun Li ◽  
Chenglin Ye ◽  
Cuifang Chang

Abstract Background: Trichomes comprise specialized multicellular structures that have the capacity to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. However, little is known about the trichome formation mechanism during flower development in Lonicera Japonica Thunb.Results: Here, we present a genome-wide comparative transcriptome analysis between two L. japonica cultivars, toward the identification of biological processes and functional gene activities that occur during flowering stage trichome development. In this study, the density and average lengths of flower trichomes were at their highest during three green periods. Using the Illumina RNA-Seq method, we obtained 134,304 unigenes, 33,733 of which were differentially expressed. In an analysis of 40 differentially expressed unigenes (DEGs) involved in trichome development, 29 of these were transcription factors. The DEGs analysis of plant hormone signal transduction indicated that plant growth and development may be independent of GA and CTK signaling pathways, and plant stress may be independent of JA and ET signaling pathways. We successfully isolated key genes involved in the floral biosynthesis of odors, tastes, colors, and plant hormones, and proposed biosynthetic pathways for sesquiterpenoid, triterpenoid, monoterpenoid, flavonoid, and plant hormones. Furthermore, 82 DEGs were assigned to cell cycles and 2,616 were predicted as plant resistance genes (PRGs).Conclusions: This study provides a comprehensive characterization of the expression profiles of flower development during the seven developmental stages of L. japonica, thereby offering valuable insights into the molecular networks that underly flower development in L. japonica.


2020 ◽  
Vol 8 (4) ◽  
pp. 607 ◽  
Author(s):  
Phillip S. Coburn ◽  
Frederick C. Miller ◽  
Morgan A. Enty ◽  
Craig Land ◽  
Austin L. LaGrow ◽  
...  

Bacillus cereus produces many factors linked to pathogenesis and is recognized for causing gastrointestinal toxemia and infections. B. cereus also causes a fulminant and often blinding intraocular infection called endophthalmitis. We reported that the PlcR/PapR system regulates intraocular virulence, but the specific factors that contribute to B. cereus virulence in the eye remain elusive. Here, we compared gene expression in ex vivo vitreous humor with expression in Luria Bertani (LB) and Brain Heart Infusion (BHI) broth by RNA-Seq. The expression of several cytolytic toxins in vitreous was less than or similar to levels observed in BHI or LB. Regulators of virulence genes, including PlcR/PapR, were expressed in vitreous. PlcR/PapR was expressed at low levels, though we reported that PlcR-deficient B. cereus was attenuated in the eye. Chemotaxis and motility genes were expressed at similar levels in LB and BHI, but at low to undetectable levels in vitreous, although motility is an important phenotype for B. cereus in the eye. Superoxide dismutase, a potential inhibitor of neutrophil activity in the eye during infection, was the most highly expressed gene in vitreous. Genes previously reported to be important to intraocular virulence were expressed at low levels in vitreous under these conditions, possibly because in vivo cues are required for higher level expression. Genes expressed in vitreous may contribute to the unique virulence of B. cereus endophthalmitis, and future analysis of the B. cereus virulome in the eye will identify those expressed in vivo, which could potentially be targeted to arrest virulence.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 891 ◽  
Author(s):  
Mobina Ulfat ◽  
Habib-ur-Rehman Athar ◽  
Zaheerud-din Khan ◽  
Hazem M. Kalaji

Salinity is one of the major abiotic stresses prevailing throughout the world that severely limits crop establishment and production. Every crop has an intra-specific genetic variation that enables it to cope with variable environmental conditions. Hence, this genetic variability is a good tool to exploit germplasms in salt-affected areas. Further, the selected cultivars can be effectively used by plant breeders and molecular biologists for the improvement of salinity tolerance. In the present study, it was planned to identify differential expression of genes associated with selective uptake of different ions under salt stress in selected salt-tolerant canola (Brassica napus L.) cultivar. For the purpose, an experiment was carried out to evaluate the growth response of different salt-sensitive and salt-tolerant canola cultivars. Plants were subjected to 200 mM NaCl stress. Canola cultivars—Faisal Canola, DGL, Dunkled, and CON-II—had higher growth than in cvs Cyclone, Ac-EXcel, Legend, and Oscar. Salt-tolerant cultivars were better able to maintain plant water status probably through osmotic adjustment as compared to salt-sensitive cultivars. Although salt stress increased shoot Na+ and shoot Cl− contents in all canola cultivars, salt-tolerant cultivars had a lower accumulation of these toxic nutrients. Similarly, salt stress reduced shoot K+ and Ca2+ contents in all canola cultivars, while salt-tolerant cultivars had a higher accumulation of K+ and Ca2+ in leaves, thereby having greater shoot K+/Na+ and Ca2+/Na+ ratios. Nutrient utilization efficiency decreased significantly in all canola cultivars due to the imposition of salt stress; however, it was greater in salt-tolerant cultivars—Faisal Canola, DGL, and Dunkled. Among four salt-tolerant canola cultivars, cv Dunkled was maximal in physiological attributes, and thus differentially expressed genes (DEGs) were assessed in it by RNA-seq analysis using next-generation sequencing (NGS) techniques. The differentially expressed genes (DEG) in cv Dunkled under salt stress were found to be involved in the regulation of ionic concentration, photosynthesis, antioxidants, and hormonal metabolism. However, the most prominent upregulated DEGs included Na/K transporter, HKT1, potassium transporter, potassium channel, chloride channel, cation exchanger, Ca channel. The RNA-seq data were validated through qRT-PCR. It was thus concluded that genes related to the regulation of ionic concentrate are significantly upregulated and expressed under salt stress, in the cultivar Dunkled.


2020 ◽  
Vol 21 (5) ◽  
pp. 1595 ◽  
Author(s):  
Hye-Yeon Seok ◽  
Linh Vu Nguyen ◽  
Doai Van Nguyen ◽  
Sun-Young Lee ◽  
Yong-Hwan Moon

Previously, we reported that overexpression of AtRH17, an Arabidopsis DEAD-box RNA helicase gene, confers salt stress-tolerance via a pathway other than the well-known salt stress-responsive pathways. To decipher the salt stress-responsive pathway in AtRH17-overexpressing transgenic plants (OXs), we performed RNA-Sequencing and identified 397 differentially expressed genes between wild type (WT) and AtRH17 OXs. Among them, 286 genes were upregulated and 111 genes were downregulated in AtRH17 OXs relative to WT. Gene ontology annotation enrichment and KEGG pathway analysis showed that the 397 upregulated and downregulated genes are involved in various biological functions including secretion, signaling, detoxification, metabolic pathways, catabolic pathways, and biosynthesis of secondary metabolites as well as in stress responses. Genevestigator analysis of the upregulated genes showed that nine genes, namely, LEA4-5, GSTF6, DIN2/BGLU30, TSPO, GSTF7, LEA18, HAI1, ABR, and LTI30, were upregulated in Arabidopsis under salt, osmotic, and drought stress conditions. In particular, the expression levels of LEA4-5, TSPO, and ABR were higher in AtRH17 OXs than in WT under salt stress condition. Taken together, our results suggest that a high AtRH17 expression confers salt stress-tolerance through a novel salt stress-responsive pathway involving nine genes, other than the well-known ABA-dependent and ABA-independent pathways.


Genomics ◽  
2020 ◽  
Author(s):  
Iqra Nawaz ◽  
Rezwan Tariq ◽  
Talha Nazir ◽  
Imran Khan ◽  
Abdul Basit ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 950 ◽  
Author(s):  
Vikas Belamkar ◽  
Nathan T Weeks ◽  
Arvind K Bharti ◽  
Andrew D Farmer ◽  
Michelle A Graham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document