Mechanical properties of altered granite gneiss considering time effect

2016 ◽  
Vol 12 (3) ◽  
pp. 215-219
Author(s):  
Huanling Wang ◽  
Weiya Xu ◽  
Ming Cai
Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1783 ◽  
Author(s):  
Xiaofei Liu ◽  
Guang Xu ◽  
Chong Zhang ◽  
Biao Kong ◽  
Jifa Qian ◽  
...  

2015 ◽  
Vol 744-746 ◽  
pp. 323-326
Author(s):  
Yi Lu ◽  
Yu Zhang ◽  
Bin Jia ◽  
Chun Yu Liu ◽  
Can Deng

Because of the existence of “loads second time effect” in reinforceing damaged internal pressure steel pipeline without prestressed FRP, the fiber cannot fully play it’s advantage of high strength. Prestressed FRP is one of the effective ways to solve this problem. According to the BFRP reinforcement of damaged internal pressure steel pipeline, this paper designed a set of the circumferential prestress stretching and anchoring integral anchorage. And tested the conversion relation between torque and stress of BFRP sheet.


Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 159
Author(s):  
Liqin Deng ◽  
Xini Zhang ◽  
Songlin Xiao ◽  
Yang Yang ◽  
Lu Li ◽  
...  

Purpose: Although the Achilles tendon (AT) is the largest and strongest tendon, it remains one of the most vulnerable tendons among elite and recreational runners. The present study aims to explore the effects of 12-week gait retraining (GR) on the plantar flexion torque of the ankle and the morphological and mechanical properties of the AT. Methods: Thirty-four healthy male recreational runners (habitual rearfoot strikers) who never tried to run in minimal shoes were recruited, and the intervention was completed (20 in the GR group vs. 14 in the control (CON) group). The participants in the GR group were asked to run in minimal shoes (INOV-8 BARE-XF 210) provided by the investigators with forefoot strike patterns during the progressive 12-week GR. Meanwhile, the participants in the CON group were instructed to run in their own running shoes, which they were familiar with, with original foot strike patterns and intensities. The morphological properties of the AT, namely, length and cross-sectional area (CSA), were obtained by using an ultrasound device. A dynamometer was utilized simultaneously to measure and calculate the plantar flexion torque of the ankle, the rate of torque development, the peak force of the AT, and the stress and strain of the AT. Results: After 12-week GR, the following results were obtained: (1) A significant time effect in the peak ankle plantarflexion torque was observed (p = 0.005), showing a 27.5% increase in the GR group; (2) A significant group effect in the CSA was observed (p = 0.027), specifically, the increase in CSA was significantly larger in the GR group than the CON group; (3) A significant time effect in the peak AT force was observed (p = 0.005), showing a 27.5% increase in the GR group. Conclusion: The effect of 12 weeks of GR is an increase in AT CSA, plantar flexor muscle strength of the ankle, and peak AT force during a maximal voluntary isometric contraction test. These changes in AT morphology and function could be positive for tendon health and could prevent future AT injury.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document