scholarly journals Molecular heterogeneity of adherens junctions.

1985 ◽  
Vol 101 (4) ◽  
pp. 1523-1531 ◽  
Author(s):  
B Geiger ◽  
T Volk ◽  
T Volberg

We describe here the subcellular distributions of three junctional proteins in different adherens-type contacts. The proteins examined include vinculin, talin, and a recently described 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 10:2249-2260). Immunofluorescent localization of the three proteins indicated that while vinculin was ubiquitously present in all adherens junctions, the other two showed selective and mutually exclusive association with either cell-substrate or cell-cell adhesions. Talin was abundant in focal contacts and in dense plaques of smooth muscle, but was essentially absent from intercellular junctions such as intercalated disks or adherens junctions of lens fibers. The 135-kD protein, on the other hand, was present in the latter two loci and was apparently absent from membrane-bound plaques of gizzard or from focal contacts. Radioimmunoassay of tissue extracts and immunolabeling of cultured chick lens cells indicated that the selective presence of talin and of the 135-kD protein in different cell contacts is spatially regulated within individual cells. On the basis of these findings it was concluded that adherens junctions are molecularly heterogeneous and consist of at least two major subgroups. Contacts with noncellular substrates contain talin and vinculin but not the 135-kD protein, whereas their intercellular counterparts contain the latter two proteins and are devoid of talin. The significance of these results and their possible relationships to contact-induced regulation of cell behavior are discussed.

1978 ◽  
Vol 56 (1) ◽  
pp. 48-53 ◽  
Author(s):  
N. Ogawa ◽  
T. Thompson ◽  
H. G. Friesen

The concentrations of a somatostatin-binding protein, found in the cytosol of a number of rat tissues, are similar in both sexes, and hypophysectomy has little or no effect on the level of binding protein in tissue extracts. On the other hand, streptozotocin-induced diabetes mellitus causes a modest decrease. The somatostatin-binding proteins obtained from extracts of several rat tissues are not only similar in molecular weight but also exhibit a similar isoelectric point and electrophoretic mobility. Agents that block thiol groups or prevent the formation of disulfide bridges markedly decrease the binding of somatostatin to the cytoplasmic protein. Studies using thiol reagents and gel filtration suggest that free thiol groups in somatostatin-binding protein are important for the binding of somatostatin.


1997 ◽  
Vol 110 (21) ◽  
pp. 2647-2659 ◽  
Author(s):  
M.T. Cruz ◽  
C.L. Dalgard ◽  
M.J. Ignatius

Integrins exist in different activation states on the surfaces of cells. Addition of the proper signal, ligand, or antibody can alter the activation state of these molecules. We report here the identification of two immunocytochemically distinct populations of beta1 integrins on fixed embryonic chick dermal fibroblasts. One population, recognized by the integrin activating mAb TASC, localizes to discrete regions of the cell, most likely focal contacts. These integrins co-localize with other proteins, such as vinculin and F-actin, and their retention at these sites is dependent on the actin cytoskeleton. The other population, identified with the inhibitory mAb W1B10, is more evenly distributed throughout the cell surface, and its pattern remains unchanged after disruption of the actin cytoskeleton. Double labeling experiments using Fab fragments of TASC alongside whole W1B10 IgG revealed non-overlapping staining patterns. These results show that it is possible to visualize and study discrete populations of integrins on cell surfaces using two different antibodies. We hypothesize that these antibodies report differences in the distribution of receptors in two different states. A model is proposed describing the ligand independent recruitment of integrins based on these findings and results from other labs.


1993 ◽  
Vol 106 (1) ◽  
pp. 55-65 ◽  
Author(s):  
M. Yamagata ◽  
S. Saga ◽  
M. Kato ◽  
M. Bernfield ◽  
K. Kimata

We showed previously that a large chondroitin sulfate proteoglycan, PG-M (also known as versican), inhibits cell-substratum adhesion, while basement membrane heparan sulfate proteoglycan (recently named perlecan) does not (Yamagata et al. (1989) J. Biol. Chem. 264, 8012–8018). To extend our understanding of the adhesive function of these proteoglycans, we examined the pericellular localization of the proteoglycans and their ligands and also that of some matrix receptors and cytoskeletal molecules in various fibroblast culture systems. PG-M was abundant in the subcellular space of fibroblasts, but was excluded selectively from focal contacts where vinculin, integrins and fibronectin were localized. Hyaluronan, CD44 and tenascin were distributed similarly as PG-M. In contrast, perlecan was associated with fibronectin and was included in focal contacts. Syndecan-1, a membrane heparan sulfate/chondroitin sulfate proteoglycan, was associated with fibronectin at the cell surface, partly at focal contacts and in association with stress fibers. Thus, complexes of PG-M with hyaluronan, tenascin and CD44, are not involved in focal contacts. On the other hand, perlecan and syndecan-1 together with fibronectin may participate in focal contacts. The difference in localization between these proteoglycans may be related to their glycosaminoglycan content and to their distinctive roles in cell-substratum adhesion.


1997 ◽  
Vol 110 (2) ◽  
pp. 169-178 ◽  
Author(s):  
P. Sanchez-Aparicio ◽  
A.M. Martinez de Velasco ◽  
C.M. Niessen ◽  
L. Borradori ◽  
I. Kuikman ◽  
...  

The high molecular mass protein, HD1, is a structural protein present in hemidesmosomes as well as in distinct adhesion structures termed type II hemidesmosomes. We have studied the distribution and expression of HD1 in the GD25 cells, derived from murine embryonal stem cells deficient for the beta 1 integrin subunit. We report here that these cells possess HD1 but not BP230 or BP180; two other hemidesmosomal constituents, and express only traces of the alpha 6 beta 4 integrin. By immunofluorescence and interference reflection microscopy HD1 was found together with vinculin at the end of actin filaments in focal contacts. In OVCAR-4 cells, derived from a human ovarian carcinoma which, like GD25 cells, only weakly express alpha 6 beta 4, HD1 was also localized in focal contacts. Upon transfection of both GD25 and OVCAR-4 cells with cDNA for the human beta 4 subunit the subcellular distribution of HD1 changed significantly. HD1 is then no longer present in focal contacts but in other structures at cell-substrate contacts, colocalized with alpha 6 beta 4. These junctional complexes are probably the equivalent of the type II hemidesmosomes. Transfection of GD25 cells with beta 1 cDNA did not affect the distribution of HD1, which indicates that the localization of HD1 in focal contacts was not due to the absence of beta 1. Moreover, in GD25 cells transfected with cDNA encoding a beta 4/beta 1 chimera, in which the cytoplasmic domain of beta 4 was replaced by that of beta 1, the distribution of HD1 was unaffected. Our findings indicate that the cytoplasmic domain of beta 4 determines the subcellular distribution of HD1 and emphasize the important role of alpha 6 beta 4 in the assembly of hemidesmosomes and other junctional adhesive complexes containing HD1.


2020 ◽  
Vol 75 (1-2) ◽  
pp. 7-12 ◽  
Author(s):  
Taiji Nomura ◽  
Shinjiro Ogita ◽  
Yasuo Kato

Abstract6-Tuliposides A (6-PosA) and B (6-PosB) are major defensive secondary metabolites in tulip cultivars (Tulipa gesneriana), having an acyl group at the C-6 position of d-glucose. Although some wild tulip species produce 1,6-diacyl-glucose type of Pos (PosD and PosF), as well as 6-PosA/B, they have not yet been isolated from tulip cultivars. Here, aiming at verifying the presence of PosD and PosF in tulip cultivars, tissue extracts of 25 cultivars were analyzed by high-performance liquid chromatography (HPLC). Although no HPLC peaks for PosD nor PosF were detected in most cultivars, we found two cultivars giving a minute HPLC peak for PosD and the other two cultivars giving that for PosF. PosD and PosF were then purified from petals of cultivar ‘Orca’ and from pistils of cultivar ‘Murasakizuisho’, respectively, and their identities were verified by spectroscopic analyses. This is the first report that substantiates the presence of 1,6-diacyl-glucose type of Pos in tulip cultivars.


2011 ◽  
Vol 195 (5) ◽  
pp. 873-887 ◽  
Author(s):  
Beate K. Straub ◽  
Steffen Rickelt ◽  
Ralf Zimbelmann ◽  
Christine Grund ◽  
Caecilia Kuhn ◽  
...  

Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this “cadherin switch” hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E–N heterodimers. We also show that cells possessing E–N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin–based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered.


1993 ◽  
Vol 331 ◽  
Author(s):  
Kelly A. Ward ◽  
Jun-Lin Guan ◽  
Daniel A. Hammer

AbstractCell-substratum adhesion is important in wound healing [4], embryogenic development [11], tissue architecture [6], and metastasis [7]. Integrins constitute a major class of heterodimeric cell-surface glycoproteins involved in receptor-mediated adhesion to the extracellular matrix (ECM). Focal contacts are regions of the cell-substratum adhesion in which clusters of integrin receptors connect the cytoskeleton to extracellular matrix molecules such as fibronectin. Focal contacts strengthen cell-substrate adhesion, and are sites of biochemical activity. Since cell adhesion strength in part depends on the cell's ability to cluster receptors and cytoskeleton into focal contacts, the integrity of the focal contact, and hence a cell's adhesive strength, will depend both on integrin-cytoskeletal binding as well as integrin-ligand binding.Using a centrifugation assay, we have quantified cell-substratum adhesion strength of mouse 3T3 cells transfected with the avian β1 integrin receptor (wild type), including various deletion mutants of its cytoplasmic domain, to surfaces containing varying concentrations of CSAT, a monoclonal antibody against the extracellular domain of the avian β1 subunit. For all the transfectants, adhesion strength decreases with decreasing CSAT concentration and increasing centrifugal strength. Different truncations of the cytoplasmic domain lead to different levels of adhesion. There is no simple correlation between the length of the cytoplasmic domain and the strength of adhesion.


1998 ◽  
Vol 274 (4) ◽  
pp. R1150-R1157
Author(s):  
Jean Giudicelli ◽  
Pascale Delque-Bayer ◽  
Pierre Sudaka ◽  
Jean-Claude Poiree

To reinvestigate the “hydrolase-related transport” concept, neutral α-d-glucosidase, a membrane-bound disaccharidase of renal proximal tubule, was first purified from brush-border membranes and then asymmetrically reincorporated into egg phosphatidylcholine vesicles. Proteolytic treatments and immunotitration studies demonstrated that this enzyme was integrated in native and artificial membrane vesicles with a similar topology. The uptake of free glucose and glucose produced by maltose hydrolysis was studied using 1) proteoliposomes containing integrated neutral α-d-glucosidase, in combination with other membrane proteins, and 2) proteoliposomes containing only the other membrane proteins but incubated in a medium containing neutral α-d-glucosidase in its hydrophilic form. No modification was observed in the uptake of freed-glucose or d-glucose produced by maltose hydrolysis, regardless of enzyme localization. In contrast to previous findings on the hydrolase-related transport concept, these results rule out any participation of neutral α-d-glucosidase in the transport of free glucose or glucose produced by maltose hydrolysis. Hydrolytic activity and transmembrane transport appear to be two independent and sequential steps.


Blood ◽  
1991 ◽  
Vol 77 (10) ◽  
pp. 2190-2199 ◽  
Author(s):  
BH Chong ◽  
XP Du ◽  
MC Berndt ◽  
S Horn ◽  
CN Chesterman

Abstract Sera of 12 patients with quinine/quinidine-induced thrombocytopenia showed drug-dependent antibody binding to glycoprotein (GP) Ib-IX complex. The reaction with GPIb-IX complex of 11 of these 12 sera was strongly inhibited by the complex-specific monoclonal antibodies (MoAbs) AK1 and SZ1. The exception was a quinine-induced serum designated BU. The reaction of the six quinidine-induced sera was also partially blocked by an anti-GPIX MoAb, FMC25. Only 3 of the 12 patient sera showed drug-dependent antibody binding to GPIIb/IIIa, which was strongly inhibited by the anti-GPIIIa MoAb 22C4, and the anti-GPIIb alpha MoAb SZ22. With detergent-solubilized Serratia metalloprotease- treated platelets, quinine/quinidine-induced sera, except BU, immunoprecipitated a membrane-bound proteolytic fragment of GPIb-IX complex. In contrast, BU immunoprecipitated glycocalicin and a 40-Kd peptide tail fragment of GPIb alpha from the cell supernatant. Using purified GPIb-IX complex or its components as the target antigen, all the quinine-induced sera, except BU, immunoprecipitated GPIb-IX complex but failed to immunoprecipitate GPIb, GPIX, or the complex reformed from GPIb and GPIX. The quinidine-induced sera strongly immunoprecipitated purified GPIb-IX complex, weakly immunoprecipitated purified GPIX and the recombined complex, but did not immunoprecipitate purified GPIb. The combined data suggest that one quinine-dependent antibody (BU) recognizes an epitope in the peptide tail region of GPIb alpha and the other five quinine-dependent antibodies react with a complex-specific epitope on the membrane-associated region of GPIb-IX complex, whereas each of the six quinidine-induced sera contain two drug-dependent antibodies, one reactive with the GPIb-IX complex- specific epitope and the other reactive with GPIX. The binding domain(s) on GPIIb/IIIa for the quinine/quinidine-dependent antibodies appear to be sterically close to the epitopes for 22C4 and SZ22.


Parasitology ◽  
1969 ◽  
Vol 59 (3) ◽  
pp. 625-636 ◽  
Author(s):  
Kathleen M. Lyons

The fine structure of two kinds of compound presumed sense organs from the heads of three skin parasitic monogeneans Gyrodactylus sp. Entobdella soleae (larva only) and Acanthocotyle elegans is described. One kind of compound receptor consists of a number of associated sensilla, each ending in a single cilium (the spike sensilla of Gyrodactylus and the cone sensilla of E. soleae oncomiracidium).The other kind of compound organ is made up of one or a few neurones only, each of which bears many cilia (pit organs of E. soleae oncomiracidium and feeding organ sensilla of Acanthocotyle elegans). The spike sensilla of Gyrodactylus have also been studied using a Cambridge Instrument Co. Stereoscan electron microscope and by phase-contrast microscopy. The ciliary endings of all these sense organs are highly modified and have lost the 9 + 2 structure, being packed with many fibres. The fibre arrangement in the cilia of the cone sensillae of E. soleae oncomiracidium and the feeding organ sensilla of A. elegans has been compared with that in the ciliary endings of other invertebrate mechano- and chemoreceptors. The possibility that the spike sensilla of Gyrodactylus may be chemoreceptors has been discussed but it is considered premature to attempt to assign functions to the other sense organs studied. Electron dense membrane-bound inclusions occurring specifically in the nerves supplying the spike sensilla of Gyrodactylus may be neurosecretory.


Sign in / Sign up

Export Citation Format

Share Document