scholarly journals Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells

2004 ◽  
Vol 166 (5) ◽  
pp. 743-753 ◽  
Author(s):  
Stéphanie Seveau ◽  
Hélène Bierne ◽  
Stéphanie Giroux ◽  
Marie-Christine Prévost ◽  
Pascale Cossart

Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-β-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity.

2011 ◽  
Vol 79 (9) ◽  
pp. 3563-3575 ◽  
Author(s):  
Chia-Der Lin ◽  
Cheng-Kuo Lai ◽  
Yu-Hsin Lin ◽  
Jer-Tsong Hsieh ◽  
Yu-Ting Sing ◽  
...  

ABSTRACTCampylobacter jejuniis a common cause of pediatric diarrhea worldwide. Cytolethal distending toxin, produced byCampylobacter jejuni, is a putative virulence factor that induces cell cycle arrest and apoptosis in eukaryotic cells. Cellular cholesterol, a major component of lipid rafts, has a pivotal role in regulating signaling transduction and protein trafficking as well as pathogen internalization. In this study, we demonstrated that cell intoxication byCampylobacter jejunicytolethal distending toxin is through the association of cytolethal distending toxin subunits and membrane cholesterol-rich microdomains. Cytolethal distending toxin subunits cofractionated with detergent-resistant membranes, while the distribution reduced upon the depletion of cholesterol, suggesting that cytolethal distending toxin subunits are associated with lipid rafts. The disruption of cholesterol using methyl-β-cyclodextrin not only reduced the binding activity of cytolethal distending toxin subunits on the cell membrane but also impaired their delivery and attenuated toxin-induced cell cycle arrest. Accordingly, cell intoxication by cytolethal distending toxin was restored by cholesterol replenishment. These findings suggest that membrane cholesterol plays a critical role in theCampylobacter jejunicytolethal distending toxin-induced pathogenesis of host cells.


2002 ◽  
Vol 70 (3) ◽  
pp. 1640-1644 ◽  
Author(s):  
Aroem Naroeni ◽  
Françoise Porte

ABSTRACT Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. We have previously shown that the maturation inhibition of the Brucella-containing phagosome appears to be restricted at the phagosomal membrane, but the precise molecular mechanisms and factors involved in this inhibition have yet to be identified. Interestingly, recent studies have revealed that caveolae or lipid rafts are implicated in the entry of some microorganisms into host cells and mediate an endocytic pathway avoiding fusion with lysosomes. In this study, we investigated the role of cholesterol and the ganglioside GM1, two components of lipid rafts, in entry and short-term survival of Brucella suis in murine macrophages, by using cholesterol-sequestering (filipin and β-methyl cyclodextrin) and GM1-binding (cholera toxin B) molecules. Our results suggest that lipid rafts may provide a portal for entry of Brucella into murine macrophages under nonopsonic conditions, thus allowing phagosome-lysosome fusion inhibition, and provide further evidence to support the idea that the phagosome maturation inhibition is restricted at the phagosomal membrane.


2005 ◽  
Vol 73 (11) ◽  
pp. 7113-7125 ◽  
Author(s):  
Jason D. Riff ◽  
John W. Callahan ◽  
Philip M. Sherman

ABSTRACT The diarrheal pathogens enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain CL56 and enteropathogenic Escherichia coli (EPEC) O127:H6 strain E2348/69 adhere intimately to epithelial cells through attaching-effacing lesions, which are characterized by rearrangements of the host cytoskeleton, intimate adherence, and destruction of microvilli. These cytoskeletal responses require activation of host signal transduction pathways. Lipid rafts are signaling microdomains enriched in sphingolipid and cholesterol in the plasma membrane. The effect of perturbing plasma membrane cholesterol on bacterial intimate adherence was assessed. Infection of both HEp-2 cells and primary skin fibroblasts with strains CL56 and E2348/69 caused characteristic rearrangements of the cytoskeleton at sites of bacterial adhesion. CL56- and E2348/69-induced cytoskeletal rearrangements were inhibited following cholesterol depletion. Addition of exogenous cholesterol to depleted HEp-2 cells restored cholesterol levels and rescued bacterially induced α-actinin mobilization. Quantitative bacterial adherence assays showed that EPEC adherence to HEp-2 cells was dramatically reduced following cholesterol depletion, whereas the adherence of EHEC remained high. Cytoskeletal rearrangements on skin fibroblasts obtained from children with Niemann-Pick type C disease were markedly reduced. These findings indicate that host membrane cholesterol contained in lipid rafts is necessary for the cytoskeletal rearrangements following infection with attaching-effacing Escherichia coli. Differences in initial adherence indicate divergent roles for host membrane cholesterol in the pathogenesis of EHEC and EPEC infections.


2015 ◽  
Vol 35 (4) ◽  
pp. 1347-1359 ◽  
Author(s):  
Yong-Zhe Zhu ◽  
Da-Ge Wu ◽  
Hao Ren ◽  
Qing-Qiang Xu ◽  
Kui-Cheng Zheng ◽  
...  

Background/Aims: Although it has been widely accepted that Enterovirus 71 (EV71) enters permissive cells via receptor-mediated endocytosis, the details of entry mechanism for EV71 still need more exploration. This study aimed to investigate the role of lipid rafts in the early stage of EV71 Infection. Methods: The effect of cholesterol depletion or addition of exogenous cholesterol was detected by immunofluorescence assays and quantitative real-time PCR. Effects of cholesterol depletion on the association of EV71 with lipid rafts were determined by flow cytometry and co-immunoprecipitation assays. Localization and internalization of EV71 and its receptor were assayed by confocal microscpoy and sucrose gradient analysis. The impact of cholesterol on the activation of phosphoinositide 3'-kinase/Akt signaling pathway during initial virus infection was analyzed by Western-blotting. Results: Disruption of membrane cholesterol by a pharmacological agent resulted in a significant reduction in the infectivity of EV71. The inhibitory effect could be reversed by the addition of exogenous cholesterol. Cholesterol depletion post-infection did not affect EV71 infection. While virus bound equally to cholesterol-depleted cells, EV71 particles failed to be internalized by cholesterol-depleted cells. EV71 capsid protein co-localized with cholera toxin B, a lipid-raft-dependent internalization marker. Conclusion: Lipid rafts play a critical role in virus endocytosis and in the activation of PI3K/Akt signaling pathway in the early stage of EV71 infection.


2022 ◽  
Vol 23 (1) ◽  
pp. 533
Author(s):  
Karel Paukner ◽  
Ivana Králová Lesná ◽  
Rudolf Poledne

Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma—the key role of macrophages in cardiovascular disease—have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.


2021 ◽  
Author(s):  
Cortney R. Halsey ◽  
Maureen K. Thomason ◽  
Rochelle C. Glover ◽  
Michelle L. Reniere

ABSTRACTThe Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wt. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ.AUTHOR SUMMARYListeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the global redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that Rex derepression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.


2006 ◽  
Vol 75 (1) ◽  
pp. 462-470 ◽  
Author(s):  
Jadwiga Jablonska ◽  
Kurt E. Dittmar ◽  
Tanja Kleinke ◽  
Jan Buer ◽  
Siegfried Weiss

ABSTRACT Early interactions between pathogens and host cells are often decisive for the subsequent course of infection. Here we investigated early events during infection by Listeria monocytogenes, a ubiquitously occurring facultative intracellular microorganism that exhibits severe pathogenicity, mainly in immunocompromised individuals. We show that the inflammatory chemokine CCL2 is highly up-regulated early after Listeria infection in spleens of BALB/c mice. ERTR-9+ macrophages of the marginal zone were identified as the only infected cells and exclusive producers of CCL2 at the early time point. Consequently, clusters of different cell types were formed around infected ERTR-9+ cells. Metallophilic MOMA-1+ marginal zone macrophages were, however, excluded from the clusters and migrated into the B-cell follicles. Depletion of CCL2 during infection resulted in a different composition of cell clusters in the spleen and increased the mortality rate of treated mice. Interestingly, ERTR-9+ macrophages no longer were part of clusters in such mice but remained at their original location in the marginal zone.


2017 ◽  
Vol 28 (22) ◽  
pp. 2945-2957 ◽  
Author(s):  
Fabian E. Ortega ◽  
Michelle Rengarajan ◽  
Natalie Chavez ◽  
Prathima Radhakrishnan ◽  
Martijn Gloerich ◽  
...  

The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required.


2008 ◽  
Vol 99 (06) ◽  
pp. 1068-1078 ◽  
Author(s):  
Marjolijn van Lier ◽  
Sandra Verhoef ◽  
Sandra Cauwenberghs ◽  
Johan Heemskerk ◽  
Jan-Willem Akkerman ◽  
...  

SummarySeveral studies have highlighted a specific role for membrane cholesterol domains in platelet signalling. Upon adhesion to von Willebrand factor (VWF) or collagen, cholesterol-rich domains (CRDs) accumulate in filopodial extensions and selectively harbour counterpart receptors (GPIb and GPVI) and associated signalling molecules. In the present study we have addressed the role of membrane cholesterol in Ca2+ signalling and secretion during the interaction of platelets with VWF and collagen.VWF/ ristocetin-induced platelet aggregation was delayed after treatment with methyl β-cyclodextrin (mbCD), but the maximal aggregation response was not affected. Platelet spreading but not adhesion to immobilised VWF under flow was attenuated by cholesterol removal, and accompanied by moderate lowering in the spiking Ca2+ response. On the other hand, platelet interaction with collagen was quite sensitive to cholesterol depletion. Platelet aggregation decreased after treatment with mbCD, and Ca2+ responses were decreased, both under static and flow conditions. Cholesterol depletion affected the secondary feedback activation via release of thromboxane A2 and ADP. The collagen-induced secretion of alpha granules and surface translocation of P-selectin and CD63 was also critically affected by cholesterol depletion. Confocal microscopy showed localization of p-Tyr at sites of contact with substrate and other platelets, where also CRDs accumulate. Our data thus reveal a more critical role for membrane cholesterol in collagen-induced than in VWF-induced Ca2+ signalling, and furthermore support the concept that secondary activation responses are dependent on intact CRDs.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Samir K. Mandal ◽  
Alexei Iakhiaev ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Cholesterol, in addition to providing rigidity to the fluid membrane, plays a critical role in receptor function, endocytosis, recycling, and signal transduction. In the present study, we examined the effect of membrane cholesterol on functional expression of tissue factor (TF), a cellular receptor for clotting factor VIIa. Depletion of cholesterol in human fibroblasts (WI-38) with methyl-β-cyclodextrin–reduced TF activity at the cell surface. Binding studies with radiolabeled VIIa and TF monoclonal antibody (mAB) revealed that reduced TF activity in cholesterol-depleted cells stems from the impairment of VIIa interaction with TF rather than the loss of TF receptors at the cell surface. Repletion of cholesterol-depleted cells with cholesterol restored TF function. Loss of caveolar structure on cholesterol removal is not responsible for reduced TF activity. Solubilization of cellular TF in different detergents indicated that a substantial portion of TF in fibroblasts is associated with noncaveolar lipid rafts. Cholesterol depletion studies showed that the TF association with these rafts is cholesterol dependent. Overall, the data presented herein suggest that membrane cholesterol functions as a positive regulator of TF function by maintaining TF receptors, probably in noncaveolar lipid rafts, in a high-affinity state for VIIa binding.


Sign in / Sign up

Export Citation Format

Share Document