scholarly journals KIF14 and citron kinase act together to promote efficient cytokinesis

2006 ◽  
Vol 172 (3) ◽  
pp. 363-372 ◽  
Author(s):  
Ulrike Gruneberg ◽  
Rüdiger Neef ◽  
Xiuling Li ◽  
Eunice H.Y. Chan ◽  
Ravindra B. Chalamalasetty ◽  
...  

Multiple mitotic kinesins and microtubule-associated proteins (MAPs) act in concert to direct cytokinesis (Glotzer, M. 2005. Science. 307:1735–1739). In anaphase cells, many of these proteins associate with an antiparallel array of microtubules termed the central spindle. The MAP and microtubule-bundling protein PRC1 (protein-regulating cytokinesis 1) is one of the key molecules required for the integrity of this structure (Jiang, W., G. Jimenez, N.J. Wells, T.J. Hope, G.M. Wahl, T. Hunter, and R. Fukunaga. 1998. Mol. Cell. 2:877–885; Mollinari, C., J.P. Kleman, W. Jiang, G. Schoehn, T. Hunter, and R.L. Margolis. 2002. J. Cell Biol. 157:1175–1186). In this study, we identify an interaction between endogenous PRC1 and the previously uncharacterized kinesin KIF14 as well as other mitotic kinesins (MKlp1/CHO1, MKlp2, and KIF4) with known functions in cytokinesis (Hill, E., M. Clarke, and F.A. Barr. 2000. EMBO J. 19:5711–5719; Matuliene, J., and R. Kuriyama. 2002. Mol. Biol. Cell. 13:1832–1845; Kurasawa, Y., W.C. Earnshaw, Y. Mochizuki, N. Dohmae, and K. Todokoro. 2004. EMBO J. 23:3237–3248). We find that KIF14 targets to the central spindle via its interaction with PRC1 and has an essential function in cytokinesis. In KIF14-depleted cells, citron kinase but not other components of the central spindle and cleavage furrow fail to localize. Furthermore, the localization of KIF14 and citron kinase to the central spindle and midbody is codependent, and they form a complex depending on the activation state of citron kinase. Contrary to a previous study (Di Cunto, F., S. Imarisio, E. Hirsch, V. Broccoli, A. Bulfone, A. Migheli, C. Atzori, E. Turco, R. Triolo, G.P. Dotto, et al. 2000. Neuron. 28:115–127), we find a general requirement for citron kinase in human cell division. Together, these findings identify a novel pathway required for efficient cytokinesis.

2002 ◽  
Vol 13 (10) ◽  
pp. 3532-3545 ◽  
Author(s):  
Mark C. Surka ◽  
Christopher W. Tsang ◽  
William S. Trimble

Cytokinesis in animal cells involves the contraction of an actomyosin ring formed at the cleavage furrow. Nuclear division, or karyokinesis, must be precisely timed to occur before cytokinesis in order to prevent genetic anomalies that would result in either cell death or uncontrolled cell division. The septin family of GTPase proteins has been shown to be important for cytokinesis although little is known about their role during this process. Here we investigate the distribution and function of the mammalian septin MSF. We show that during interphase, MSF colocalizes with actin, microtubules, and another mammalian septin, Nedd5, and coprecipitates with six septin proteins. In addition, transfections of various MSF isoforms reveal that MSF-A specifically localizes with microtubules and that this localization is disrupted by nocodazole treatment. Furthermore, MSF isoforms localize primarily with tubulin at the central spindle during mitosis, whereas Nedd5 is mainly associated with actin. Microinjection of affinity-purified anti-MSF antibodies into synchronized cells, or depletion of MSF by small interfering RNAs, results in the accumulation of binucleated cells and in cells that have arrested during cytokinesis. These results reveal that MSF is required for the completion of cytokinesis and suggest a role that is distinct from that of Nedd5.


2020 ◽  
Vol 64 (2) ◽  
pp. 337-347
Author(s):  
Amit Rahi ◽  
Manas Chakraborty ◽  
Kristen Vosberg ◽  
Dileep Varma

Abstract The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore–microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.


1997 ◽  
Vol 139 (4) ◽  
pp. 975-983 ◽  
Author(s):  
Søren S.L. Andersen ◽  
Eric Karsenti

To understand the role of microtubule-associated proteins (MAPs) in the regulation of microtubule (MT) dynamics we have characterized MAPs prepared from Xenopus laevis eggs (Andersen, S.S.L., B. Buendia, J.E. Domínguez, A. Sawyer, and E. Karsenti. 1994. J. Cell Biol. 127:1289–1299). Here we report on the purification and characterization of a 310-kD MAP (XMAP310) that localizes to the nucleus in interphase and to mitotic spindle MTs in mitosis. XMAP310 is present in eggs, oocytes, a Xenopus tissue culture cell line, testis, and brain. We have purified XMAP310 to homogeneity from egg extracts. The purified protein cross-links pure MTs. Analysis of the effect of this protein on MT dynamics by time-lapse video microscopy has shown that it increases the rescue frequency 5–10-fold and decreases the shrinkage rate twofold. It has no effect on the growth rate or the catastrophe frequency. Microsequencing data suggest that XMAP230 and XMAP310 are novel MAPs. Although the three Xenopus MAPs characterized so far, XMAP215 (Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. J. Cell Biol. 127:985–993), XMAP230, and XMAP310 are localized to the mitotic spindle, they have distinct effects on MT dynamics. While XMAP215 promotes rapid MT growth, XMAP230 decreases the catastrophe frequency and XMAP310 increases the rescue frequency. This may have important implications for the regulation of MT dynamics during spindle morphogenesis and chromosome segregation.


2021 ◽  
Author(s):  
Sreelaja Nair ◽  
Elaine L Welch ◽  
Cara E Moravec ◽  
Ryan L Trevena ◽  
Francisco Pelegri

We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1family of microtubule-associated proteins. Embryos from tmi/prc1l homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that tmi/prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal tmi/prc1l function is also essential for the reorganization of vegetal pole microtubules required for embryonic axis induction. While Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1 in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.


2014 ◽  
Vol 207 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Gary J. Brouhard ◽  
Luke M. Rice

Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks.


2016 ◽  
Vol 213 (6) ◽  
pp. 605-607 ◽  
Author(s):  
Zairan Liu ◽  
Orion D. Weiner

RhoA controls cleavage furrow formation during cell division, but whether RhoA suffices to orchestrate spatiotemporal dynamics of furrow formation is unknown. In this issue, Wagner and Glotzer (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201603025) show that RhoA activity can induce furrow formation in all cell cortex positions and cell cycle phases.


2003 ◽  
Vol 161 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Mark van Breugel ◽  
David Drechsel ◽  
Anthony Hyman

The Dis1/XMAP215 family of microtubule-associated proteins conserved from yeast to mammals is essential for cell division. XMAP215, the Xenopus member of this family, has been shown to stabilize microtubules in vitro, but other members of this family have not been biochemically characterized. Here we investigate the properties of the Saccharomyces cerevisiae homologue Stu2p in vitro. Surprisingly, Stu2p is a microtubule destabilizer that binds preferentially to microtubule plus ends. Quantitative analysis of microtubule dynamics suggests that Stu2p induces microtubule catastrophes by sterically interfering with tubulin addition to microtubule ends. These results reveal both a new biochemical activity for a Dis1/XMAP215 family member and a novel mechanism for microtubule destabilization.


1990 ◽  
Vol 110 (1) ◽  
pp. 71-79 ◽  
Author(s):  
P Lamoureux ◽  
V L Steel ◽  
C Regal ◽  
L Adgate ◽  
R E Buxbaum ◽  
...  

Several groups have shown that PC12 will extend microtubule-containing neurites on extracellular matrix (ECM) with no lag period in the absence of nerve growth factor. This is in contrast to nerve growth factor (NGF)-induced neurite outgrowth that occurs with a lag period of several days. During this lag period, increased synthesis or activation of assembly-promoting microtubule-associated proteins (MAPs) occurs and is apparently required for neurite extension. We investigated the growth and microtubule (MT) content of PC12 neurites grown on ECM in the presence or absence of inhibitors of neurite outgrowth. On ECM, neurites of cells with or without prior exposure to NGF contain a normal density of MTs, but frequently contain unusual loops of MTs in their termini that may indicate increased MT assembly. On ECM, neurites extend from PC12 cells in the presence of 10 microM LiCl at significantly higher frequency than on polylysine. On other substrates, LiCl inhibits neurite outgrowth, apparently by inhibiting phosphorylation of particular MAPs (Burstein, D. E., P. J. Seeley, and L. A. Greene. 1985. J. Cell Biol. 101:862-870). Although 35-45% of 60 Li(+)-neurites examined were found to contain a normal array of MTs, 25-30% were found to have a MT density approximately 15% of normal. The remaining 30% of these neurites were found to be nearly devoid of MTs, containing only occasional, ambiguous, short tubular elements. We also found that neurites would extend on ECM in the presence of the microtubule depolymerizing drug, nocodazole. At 0.1 micrograms/ml nocodazole, cells on ECM produce neurites that contain a normal density of MTs. This is in contrast to the lack of neurite outgrowth and retraction of extant neurites that this dose produces in cells grown on polylysine. At 0.2 microgram/ml nocodazole, neurites again grew out in substantial number and four of five neurites examined ultrastructurally were found to be completely devoid of microtubules. We interpret these results by postulating that growth on ECM relieves the need for MTs to serve as compressive supports for neurite tension (Dennerll, T. J., H. C. Joshi, U. L. Steel, R. E. Buxbaum, and S. R. Heidemann. 1988. J. Cell Biol. 107:665). Because compression destabilizes MTs and favors disassembly, this would tend to increase MT assembly relative to other conditions, as we found. Additionally, if MTs are not needed as compressive supports, neurites could grow out in their absence, as we also observed.


Sign in / Sign up

Export Citation Format

Share Document