scholarly journals Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied

2008 ◽  
Vol 182 (4) ◽  
pp. 623-629 ◽  
Author(s):  
Daniela A. Brito ◽  
Zhenye Yang ◽  
Conly L. Rieder

When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37°C, the duration of mitosis in nocodazole, colcemid, or vinblastine concentrations that inhibit MT assembly varied from 20 to 30 h, revealing that different MT poisons differentially depress the cyclin B destruction rate during slippage. The duration of mitosis in Eg5 inhibitors, which induce monopolar spindles without disrupting MT dynamics, was the same as in cells lacking MTs. Thus, in the presence of numerous unattached kinetochores, MTs do not accelerate slippage. Finally, compared with cells lacking MTs, exit from mitosis is accelerated over a range of spindle poison concentrations that allow MT assembly because the SAC becomes satisfied on abnormal spindles and not because slippage is accelerated.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana C. Henriques ◽  
Patrícia M. A. Silva ◽  
Bruno Sarmento ◽  
Hassan Bousbaa

AbstractAntimitotic drugs arrest cells in mitosis through chronic activation of the spindle assembly checkpoint (SAC), leading to cell death. However, drug-treated cancer cells can escape death by undergoing mitotic slippage, due to premature mitotic exit. Therefore, overcoming slippage issue is a promising chemotherapeutic strategy to improve the effectiveness of antimitotics. Here, we antagonized SAC silencing by knocking down the MAD2-binding protein p31comet, to delay mitotic slippage, and tracked cancer cells treated with the antimitotic drug paclitaxel, over 3 days live-cell time-lapse analysis. We found that in the absence of p31comet, the duration of mitotic block was increased in cells challenged with nanomolar concentrations of paclitaxel, leading to an additive effects in terms of cell death which was predominantly anticipated during the first mitosis. As accumulation of an apoptotic signal was suggested to prevent mitotic slippage, when we challenged p31comet-depleted mitotic-arrested cells with the apoptosis potentiator Navitoclax (previously called ABT-263), cell fate was shifted to accelerated post-mitotic death. We conclude that inhibition of SAC silencing is critical for enhancing the lethality of antimitotic drugs as well as that of therapeutic apoptosis-inducing small molecules, with distinct mechanisms. The study highlights the potential of p31comet as a target for antimitotic therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teng-Long Han ◽  
Hang Sha ◽  
Jun Ji ◽  
Yun-Tian Li ◽  
Deng-Shan Wu ◽  
...  

AbstractThe anticancer effects of taxanes are attributed to the induction of mitotic arrest through activation of the spindle assembly checkpoint. Cell death following extended mitotic arrest is mediated by the intrinsic apoptosis pathway. Accordingly, factors that influence the robustness of mitotic arrest or disrupt the apoptotic machinery confer drug resistance. Survivin is an inhibitor of apoptosis protein. Its overexpression is associated with chemoresistance, and its targeting leads to drug sensitization. However, Survivin also acts specifically in the spindle assembly checkpoint response to taxanes. Hence, the failure of Survivin-depleted cells to arrest in mitosis may lead to taxane resistance. Here we show that Survivin depletion protects HeLa cells against docetaxel-induced apoptosis by facilitating mitotic slippage. However, Survivin depletion does not promote clonogenic survival of tumor cells but increases the level of cellular senescence induced by docetaxel. Moreover, lentiviral overexpression of Survivin does not provide protection against docetaxel or cisplatin treatment, in contrast to the anti-apoptotic Bcl-xL or Bcl-2. Our findings suggest that targeting Survivin may influence the cell response to docetaxel by driving the cells through aberrant mitotic progression, rather than directly sensitizing cells to apoptosis.


2008 ◽  
Vol 183 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Evan C. Osmundson ◽  
Dipankar Ray ◽  
Finola E. Moore ◽  
Qingshen Gao ◽  
Gerald H. Thomsen ◽  
...  

Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.


Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Osamah Batiha ◽  
Andrew Swan

The spindle assembly checkpoint (SAC) plays an important role in mitotic cells to sense improper chromosome attachment to spindle microtubules and to inhibit APCFzy-dependent destruction of cyclin B and Securin; consequent initiation of anaphase until correct attachments are made. In Drosophila , SAC genes have been found to play a role in ensuring proper chromosome segregation in meiosis, possibly reflecting a similar role for the SAC in APCFzy inhibition during meiosis. We found that loss of function mutations in SAC genes, Mad2, zwilch, and mps1, do not lead to the predicted rise in APCFzy-dependent degradation of cyclin B either globally throughout the egg or locally on the meiotic spindle. Further, the SAC is not responsible for the inability of APCFzy to target cyclin B and promote anaphase in metaphase II arrested eggs from cort mutant females. Our findings support the argument that SAC proteins play checkpoint independent roles in Drosophila female meiosis and that other mechanisms must function to control APC activity.


2016 ◽  
Vol 215 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Michael Brandeis

The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage.


2019 ◽  
Author(s):  
Lindsey A Allan ◽  
Magda Reis ◽  
Yahui Liu ◽  
Pim Huis in ’t Veld ◽  
Geert JPL Kops ◽  
...  

ABSTRACTThe Cyclin B:CDK1 kinase complex is the master regulator of mitosis that phosphorylates hundreds of proteins to coordinate mitotic progression. We show here that, in addition to these kinase functions, Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminus of MAD1, and point mutations in this region remove corona MAD1 and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness, in this context, arises because Cyclin B1-MAD1 localisation becomes MPS1-independent after the corona has been established. We demonstrate that this allows corona-MAD1 to persist at kinetochores when MPS1 activity falls, ensuring that it can still be phosphorylated on a key C-terminal catalytic site by MPS1. Therefore, this study explains how corona MAD1 generates a robust SAC signal and why stripping of this pool by dynein is essential for SAC silencing. It also reveals that the key mitotic kinase, Cyclin B1-Cdk1, scaffolds the pathway that inhibits its own degradation.


2010 ◽  
Vol 30 (13) ◽  
pp. 3384-3395 ◽  
Author(s):  
Deyu Li ◽  
Gary Morley ◽  
Michael Whitaker ◽  
Jun-Yong Huang

ABSTRACT To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20. Mad2 and BubR1 are inhibitors of the APC/C, but Cdc20 is an activator. Exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear; in vertebrates, most current models suggest that kinetochore-bound Mad2 is required for initial binding to Cdc20 to form a stable complex that includes BubR1. Here, we show that the Mad2 kinetochore dimerization recruitment mechanism is conserved and that the recruitment of Cdc20 to kinetochores in Drosophila requires BubR1 but not Mad2. BubR1 and Mad2 can bind to Cdc20 independently, and the interactions are enhanced after cells are arrested at mitosis by the depletion of Cdc27 using RNA interference (RNAi) in S2 cells or by MG132 treatment in syncytial embryos. These findings offer an explanation of why BubR1 is more important than Mad2 for SAC function in flies. These findings could lead to a better understanding of vertebrate SAC mechanisms.


2010 ◽  
Vol 38 (6) ◽  
pp. 1645-1649 ◽  
Author(s):  
Valentina Rossio ◽  
Elena Galati ◽  
Simonetta Piatti

Many cancer-treating compounds used in chemotherapies, the so-called antimitotics, target the mitotic spindle. Spindle defects in turn trigger activation of the SAC (spindle assembly checkpoint), a surveillance mechanism that transiently arrests cells in mitosis to provide the time for error correction. When the SAC is satisfied, it is silenced. However, after a variable amount of time, cells escape from the mitotic arrest, even if the SAC is not satisfied, through a process called adaptation or mitotic slippage. Adaptation weakens the killing properties of antimitotics, ultimately giving rise to resistant cancer cells. We summarize here the mechanisms underlying this process and propose a strategy to identify the factors involved using budding yeast as a model system. Inhibition of factors involved in SAC adaptation could have important therapeutic applications by potentiating the ability of antimitotics to cause cell death.


2011 ◽  
Vol 22 (22) ◽  
pp. 4236-4246 ◽  
Author(s):  
Robert S. Hagan ◽  
Michael S. Manak ◽  
Håkon Kirkeby Buch ◽  
Michelle G. Meier ◽  
Patrick Meraldi ◽  
...  

The spindle assembly checkpoint links the onset of anaphase to completion of chromosome-microtubule attachment and is mediated by the binding of Mad and Bub proteins to kinetochores of unattached or maloriented chromosomes. Mad2 and BubR1 traffic between kinetochores and the cytosol, thereby transmitting a “wait anaphase” signal to the anaphase-promoting complex. It is generally assumed that this signal dissipates automatically upon kinetochore-microtubule binding, but it has been shown that under conditions of nocodazole-induced arrest p31comet, a Mad2-binding protein, is required for mitotic progression. In this article we investigate the localization and function of p31comet during normal, unperturbed mitosis in human and marsupial cells. We find that, like Mad2, p31comet traffics on and off kinetochores and is also present in the cytosol. Cells depleted of p31comet arrest in metaphase with mature bipolar kinetochore-microtubule attachments, a satisfied checkpoint, and high cyclin B levels. Thus p31comet is required for timely mitotic exit. We propose that p31comet is an essential component of the machinery that silences the checkpoint during each cell cycle.


Sign in / Sign up

Export Citation Format

Share Document