scholarly journals Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion

2009 ◽  
Vol 184 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Brian R. Daniels ◽  
Edward M. Perkins ◽  
Terrence M. Dobrowsky ◽  
Sean X. Sun ◽  
Denis Wirtz

To generate cellular diversity in developing organisms while simultaneously maintaining the developmental potential of the germline, germ cells must be able to preferentially endow germline daughter cells with a cytoplasmic portion containing specialized cell fate determinants not inherited by somatic cells. In Caenorhabditis elegans, germline inheritance of the protein PIE-1 is accomplished by first asymmetrically localizing the protein to the germplasm before cleavage and subsequently degrading residual levels of the protein in the somatic cytoplasm after cleavage. Despite its critical involvement in cell fate determination, the enrichment of germline determinants remains poorly understood. Here, combining live-cell fluorescence methods and kinetic modeling, we demonstrate that the enrichment process does not involve protein immobilization, intracellular compartmentalization, or localized protein degradation. Instead, our results support a heterogeneous reaction/diffusion model for PIE-1 enrichment in which the diffusion coefficient of PIE-1 is reversibly reduced in the posterior, resulting in a stable protein gradient across the zygote at steady state.

2007 ◽  
Vol 18 (11) ◽  
pp. 4470-4482 ◽  
Author(s):  
Jui-Ching Wu ◽  
Lesilee S. Rose

The conserved PAR proteins are localized in asymmetric cortical domains and are required for the polarized localization of cell fate determinants in many organisms. In Caenorhabditis elegans embryos, LET-99 and G protein signaling act downstream of the PARs to regulate spindle positioning and ensure asymmetric division. PAR-3 and PAR-2 localize LET-99 to a posterior cortical band through an unknown mechanism. Here we report that LET-99 asymmetry depends on cortically localized PAR-1 and PAR-4 but not on cytoplasmic polarity effectors. In par-1 and par-4 embryos, LET-99 accumulates at the entire posterior cortex, but remains at low levels at the anterior cortex occupied by PAR-3. Further, PAR-3 and PAR-1 have graded cortical distributions with the highest levels at the anterior and posterior poles, respectively, and the lowest levels of these proteins correlate with high LET-99 accumulation. These results suggest that PAR-3 and PAR-1 inhibit the localization of LET-99 to generate a band pattern. In addition, PAR-1 kinase activity is required for the inhibition of LET-99 localization, and PAR-1 associates with LET-99. Finally, examination of par-1 embryos suggests that the banded pattern of LET-99 is critical for normal posterior spindle displacement and to prevent spindle misorientation caused by cell shape constraints.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1705-1714 ◽  
Author(s):  
Rocio Aguado ◽  
Nadia Martin-Blanco ◽  
Michael Caraballo ◽  
Matilde Canelles

Abstract Stem cells must proliferate and differentiate to generate the lineages that shape mature organs; understanding these 2 processes and their interaction is one of the central themes in current biomedicine. An intriguing aspect is asymmetric division, by which 2 daughter cells with different fates are generated. Several cell fate determinants participate in asymmetric division, with the endocytic adaptor Numb as the best-known example. Here, we have explored the role of asymmetric division in thymocyte development, visualizing the differential segregation of Numb and pre-TCR in thymic precursors. Analysis of mice where Numb had been inhibited by expressing a dominant negative revealed enhanced pre–T-cell receptor (TCR) signaling and a smaller thymus. Conversely, Numb overexpression resulted in loss of asymmetric division and a larger thymus. The conclusion is that Numb determines the levels of pre-TCR signaling in dividing thymocytes and, ultimately, the size of the pool from which mature T lymphocytes are selected.


Author(s):  
Yabing Hu ◽  
Xuewen Hu ◽  
Dongchen Li ◽  
Zhenzhen Du ◽  
Kun Shi ◽  
...  

During oocyte maturation and the oocyte-to-embryo transition, key developmental regulators such as RNA-binding proteins coordinate translation of particular messenger RNA (mRNAs) and related developmental processes by binding to their cognate maternal mRNAs. In the nematode Caenorhabditis elegans, these processes are regulated by a set of CCCH zinc finger proteins. Oocyte maturation defective-1 (OMA-1) and OMA-2 are two functionally redundant CCCH zinc finger proteins that turnover rapidly during the first embryonic cell division. These turnovers are required for proper transition from oogenesis to embryogenesis. A gain-of-function mutant of OMA-1, oma-1(zu405), stabilizes and delays degradation of OMA-1, resulting in delayed turnover and mis-segregation of other cell fate determinants, which eventually causes embryonic lethality. We performed a large-scale forward genetic screen to identify suppressors of the oma-1(zu405) mutant. We show here that multiple alleles affecting functions of various anaphase promoting complex/cyclosome (APC/C) subunits, including MAT-1, MAT-2, MAT-3, EMB-30, and FZY-1, suppress the gain-of-function mutant of OMA-1. Transcriptome analysis suggested that overall transcription in early embryos occurred after introducing mutations in APC/C genes into the oma-1(zu405) mutant. Mutations in APC/C genes prevent OMA-1 enrichment in P granules and correct delayed degradation of downstream cell fate determinants including pharynx and intestine in excess-1 (PIE-1), posterior segregation-1 (POS-1), muscle excess-3 (MEX-3), and maternal effect germ-cell defective-1 (MEG-1). We demonstrated that only the activator FZY-1, but not FZR-1, is incorporated in the APC/C complex to regulate the oocyte-to-embryo transition. Our findings suggested a genetic relationship linking the APC/C complex and OMA-1, and support a model in which the APC/C complex promotes P granule accumulation and modifies RNA binding of OMA-1 to regulate the oocyte-to-embryo transition process.


2003 ◽  
Vol 162 (4) ◽  
pp. 623-633 ◽  
Author(s):  
Fengwei Yu ◽  
Yu Cai ◽  
Rachna Kaushik ◽  
Xiaohang Yang ◽  
William Chia

The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two signaling pathways: Bazooka/Drosophila atypical PKC/Inscuteable/DmPar6 and Partner of inscuteable (Pins)/Gαi; in addition, Gβ13F is also required. However, the role of Gαi and the hierarchical relationship between the G protein subunits and apical components are not well defined. Here we describe the isolation of Gαi mutants and show that Gαi and Gβ13F play distinct roles. Gαi is required for Pins to localize to the cortex, and the effects of loss of Gαi or pins are highly similar, supporting the idea that Pins/Gαi act together to mediate various aspects of neuroblast asymmetric division. In contrast, Gβ13F appears to regulate the asymmetric localization/stability of all apical components, and Gβ13F loss of function exhibits phenotypes resembling those seen when both apical pathways have been compromised, suggesting that it acts upstream of the apical pathways. Importantly, our results have also revealed a novel aspect of apical complex function, that is, the two apical pathways act redundantly to suppress the formation of basal astral microtubules in neuroblasts.


2013 ◽  
Vol 368 (1629) ◽  
pp. 20130291 ◽  
Author(s):  
Dan T. Bergstralh ◽  
Timm Haack ◽  
Daniel St Johnston

During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
András Hartmann ◽  
Satoshi Okawa ◽  
Gaia Zaffaroni ◽  
Antonio del Sol

Reproduction ◽  
2016 ◽  
Vol 151 (4) ◽  
pp. 351-367 ◽  
Author(s):  
Zhuxia Zheng ◽  
Hongmei Li ◽  
Qinfen Zhang ◽  
Lele Yang ◽  
Huayu Qi

Cell lineage determination during early embryogenesis has profound effects on adult animal development. Pre-patterning of embryos, such as that of Drosophila and Caenorhabditis elegans, is driven by asymmetrically localized maternal or zygotic factors, including mRNA species and RNA binding proteins. However, it is not clear how mammalian early embryogenesis is regulated and what the early cell fate determinants are. Here we show that, in mouse, mitochondrial ribosomal RNAs (mtrRNAs) are differentially distributed between 2-cell sister blastomeres. This distribution pattern is not related to the overall quantity or activity of mitochondria which appears equal between 2-cell sister blastomeres. Like in lower species, 16S mtrRNA is found to localize in the cytoplasm outside of mitochondria in mouse 2-cell embryos. Alterations of 16S mtrRNA levels in one of the 2-cell sister blastomere via microinjection of either sense or anti-sense RNAs drive its progeny into different cell lineages in blastocyst. These results indicate that mtrRNAs are differentially distributed among embryonic cells at the beginning of embryogenesis in mouse and they are functionally involved in the regulation of cell lineage allocations in blastocyst, suggesting an underlying molecular mechanism that regulates pre-implantation embryogenesis in mouse.


2021 ◽  
Author(s):  
Tiankai Zhao ◽  
Yubing Sun ◽  
Xin Li ◽  
Mehdi Baghaee ◽  
Yuenan Wang ◽  
...  

Reaction-diffusion models have been widely used to elucidate pattern formation in developmental biology. More recently, they have also been applied in modeling cell fate patterning that mimic early-stage human development events utilizing geometrically confined pluripotent stem cells. However, the traditional reaction-diffusion equations could not satisfactorily explain the concentric ring distributions of various cell types, as they do not yield circular patterns even for circular domains. In previous mathematical models that yield ring patterns, certain conditions that lack biophysical understandings had been considered in the reaction-diffusion models. Here we hypothesize that the circular patterns are the results of the coupling of the mechanobiological factors with the traditional reaction-diffusion model. We propose two types of coupling scenarios: tissue tension-dependent diffusion flux and traction stress-dependent activation of signaling molecules. By coupling reaction-diffusion equations with the elasticity equations, we demonstrate computationally that the contraction-reaction-diffusion model can naturally yield the circular patterns.


Sign in / Sign up

Export Citation Format

Share Document