scholarly journals The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

2015 ◽  
Vol 210 (5) ◽  
pp. 833-849 ◽  
Author(s):  
Harriet P. Lo ◽  
Susan J. Nixon ◽  
Thomas E. Hall ◽  
Belinda S. Cowling ◽  
Charles Ferguson ◽  
...  

Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system.

2016 ◽  
Vol 27 (7) ◽  
pp. 1051-1059 ◽  
Author(s):  
Toshiyuki Oda ◽  
Tatsuki Abe ◽  
Haruaki Yanagisawa ◽  
Masahide Kikkawa

The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 159-169
Author(s):  
Benjamin Boettner ◽  
Phoebe Harjes ◽  
Satoshi Ishimaru ◽  
Michael Heke ◽  
Hong Qing Fan ◽  
...  

Abstract Rap1 belongs to the highly conserved Ras subfamily of small GTPases. In Drosophila, Rap1 plays a critical role in many different morphogenetic processes, but the molecular mechanisms executing its function are unknown. Here, we demonstrate that Canoe (Cno), the Drosophila homolog of mammalian junctional protein AF-6, acts as an effector of Rap1 in vivo. Cno binds to the activated form of Rap1 in a yeast two-hybrid assay, the two molecules colocalize to the adherens junction, and they display very similar phenotypes in embryonic dorsal closure (DC), a process that relies on the elongation and migration of epithelial cell sheets. Genetic interaction experiments show that Rap1 and Cno act in the same molecular pathway during DC and that the function of both molecules in DC depends on their ability to interact. We further show that Rap1 acts upstream of Cno, but that Rap1, unlike Cno, is not involved in the stimulation of JNK pathway activity, indicating that Cno has both a Rap1-dependent and a Rap1-independent function in the DC process.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Manijeh Hamzepoor ◽  
Maryam Sohrabi ◽  
Massoud Saidijam ◽  
Mohammad Javad Assari ◽  
...  

Abstract Background Silver nanoparticles (AgNPs) can accumulate in various organs after oral exposure. The main objective of the current study is to evaluate the renal toxicity induced by AgNPs after repeated oral exposure and to determine the relevant molecular mechanisms. Methods In this study, 40 male Wistar rats were treated with solutions containing 30, 125, 300, and 700 mg/kg of AgNPs. After 28 days of exposure, histopathological changes were assessed using hematoxylin-eosin (H&E), Masson’s trichrome, and periodic acid-Schiff (PAS) staining. Apoptosis was quantified by TUNEL and immunohistochemistry of caspase-3, and the level of expression of the mRNAs of growth factors was determined using RT-PCR. Results Histopathologic examination revealed degenerative changes in the glomeruli, loss of tubular architecture, loss of brush border, and interrupted tubular basal laminae. These changes were more noticeable in groups treated with 30 and 125 mg/kg. The collagen intensity increased in the group treated with 30 mg/kg in both the cortex and the medulla. Apoptosis was much more evident in middle-dose groups (i.e., 125 and 300 mg/kg). The results of RT-PCR indicated that Bcl-2 and Bax mRNAs upregulated in the treated groups (p < 0.05). Moreover, the data related to EGF, TNF-α, and TGF-β1 revealed that AgNPs induced significant changes in gene expression in the groups treated with 30 and 700 mg/kg compared to the control group. Conclusion Our observations showed that AgNPs played a critical role in in vivo renal toxicity.


2021 ◽  
Author(s):  
Xin Peng ◽  
Shaolu Zhang ◽  
Wenhui Jiao ◽  
Zhenxing Zhong ◽  
Yuqi Yang ◽  
...  

Abstract Background: The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer.Methods: The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. Results: HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. Conclusions: Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the “off target” effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Gunsmaa Nyamsuren ◽  
Gregor Christof Rapp ◽  
Björn Tampe ◽  
Michael Zeisberg

Abstract Background and Aims Aryl hydrocarbon receptor nuclear translocator (ARNT) mediates anti-fibrotic activity in kidney and liver through induction of ALK3-receptor expression and subsequently increased Smad1/5/8 signaling. While expression of ARNT can be pharmacologically induced by sub-immunosuppressive doses of FK506 or by GPI1046, its anti-fibrotic activity is only realized when ARNT-ARNT homodimers form, as opposed to formation of ARNT-AHR or ARNT-HIF1α heterodimers. Mechanisms underlying ARNTs dimerization decision to specifically form ARNT-ARNT homodimers and possible cues to specifically induce ARNT homodimerization have been previously unknown. We here aimed to elucidate the molecular mechanisms underlying control of ARNT dimerization decision and to explore its therapeutic potential. Method We analyzed dimerization of recombinant and native ARNT by immunoprecipitation, MALDI-TOF mass spectrometry, and LS-MS/MS analysis and proximity ligation assay. Phosphorylation sites were mapped through generation of phosphorylation site mutants and through pharmacological inhibition. For in vivo analysis we challenged mice with model of unilateral ureter obstruction and carbon tetrachloride to induce fibrosis in kidney and liver. Results Here we report that inhibition of PP2A phosphatase activity increases intracellular accumulation of ARNT-ARNT homodimers. This effect is dependent on enhanced ARNT-ARNT homodimerization and decreased ARNT proteolytic degradation, but independent of ARNT transcription (which remains unchanged upon PP2A inhibition). We further identify that Ser77 phosphorylation plays a critical role in ARNT homodimerization, as ARNT-ARNT homodimers do not form with Ser77/Asp-mutant ARNT proteins. In light of previous studies which identified anti-fibrotic activity upon increased ARNT expression, we further demonstrate attenuated fibrosis upon monotherapy with the PP2A inhibitor LB100, and additive anti-fibrotic activities upon combination with pharmacological inducers of ARNT expression FK506 or GPI1046 in murine models of kidney and liver fibrosis. Conclusion Our study provides additional evidence for the anti-fibrotic activity of ARNT and reveals Ser77 phosphorylation as a novel pharmacological target to realize the therapeutic potential of increased ARNT transactivation activity.


Blood ◽  
2004 ◽  
Vol 103 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ryan A. Wilcox ◽  
Koji Tamada ◽  
Dallas B. Flies ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
...  

Abstract T-cell anergy is a tolerance mechanism defined as a hyporesponsive status of antigen-specific T cells upon prior antigen encounter and is believed to play a critical role in the evasion of tumor immunity and the amelioration of allogeneic transplant rejection. Molecular mechanisms in controlling T-cell anergy are less known. We show here that administration of an agonistic monoclonal antibody (mAb) to CD137, a member of the tumor necrosis factor receptor superfamily, prevents the induction of CD8+ cytolytic T-lymphocyte (CTL) anergy by soluble antigens. More importantly, CD137 mAb restores the functions of established anergic CTLs upon reencountering their cognate antigen. As a result, infusion of CD137 mAb inhibits progressive tumor growth that is caused by soluble tumor antigen-induced tolerance in a P815R model. CD137 mAb also restores proliferation and effector functions of anergic alloreactive 2C T cells in a bone marrow transplantation model. Our results indicate that ligation of CD137 receptor delivers a regulatory signal for T-cell anergy and implicate manipulation of the CD137 pathway as a new approach to break T-cell tolerance.


2000 ◽  
Vol 166 (3) ◽  
pp. 579-590 ◽  
Author(s):  
FP Dominici ◽  
G Arostegui Diaz ◽  
A Bartke ◽  
JJ Kopchick ◽  
D Turyn

Growth hormone (GH) deficiency is associated with increased sensitivity to insulin, but the molecular mechanisms involved in this association are poorly understood. In the current work, we have examined the consequences of the absence of the biological effects of GH on the first steps of the insulin signaling system in vivo in liver of mice with targeted disruption of the GH receptor/GH binding protein gene (GHR-KO mice). In these animals, circulating insulin concentrations are less than 4 microIU/ml, and glucose concentrations are low, concordant with a state of insulin hypersensitivity. The abundance and tyrosine phosphorylation state of the insulin receptor (IR), the IR substrate-1 (IRS-1), and Shc, the association between IRS-1 and the p85 subunit of phosphatidylinositol (PI) 3-kinase, the IRS-1- and the phosphotyrosine-associated PI 3-kinase in liver were examined. We found that, in liver of GHR-KO mice, the lack of GHR and GH eff! ects is associated with: (1) increased IR abundance, (2) increased insulin-stimulated IR tyrosine phosphorylation, (3) normal efficiency of IRS-1 and Shc tyrosine phosphorylation and (4) normal activation of PI 3-kinase by insulin. These alterations could represent an adaptation to the low insulin concentrations displayed by these animals, and may account for their increased insulin sensitivity.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1767-1775 ◽  
Author(s):  
Markus Bender ◽  
Anita Eckly ◽  
John H. Hartwig ◽  
Margitta Elvers ◽  
Irina Pleines ◽  
...  

Abstract The cellular and molecular mechanisms orchestrating the complex process by which bone marrow megakaryocytes form and release platelets remain poorly understood. Mature megakaryocytes generate long cytoplasmic extensions, proplatelets, which have the capacity to generate platelets. Although microtubules are the main structural component of proplatelets and microtubule sliding is known to drive proplatelet elongation, the role of actin dynamics in the process of platelet formation has remained elusive. Here, we tailored a mouse model lacking all ADF/n-cofilin–mediated actin dynamics in megakaryocytes to specifically elucidate the role of actin filament turnover in platelet formation. We demonstrate, for the first time, that in vivo actin filament turnover plays a critical role in the late stages of platelet formation from megakaryocytes and the proper sizing of platelets in the periphery. Our results provide the genetic proof that platelet production from megakaryocytes strictly requires dynamic changes in the actin cytoskeleton.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2260 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Background.Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of anin vivoscan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuringin vivohuman muscle and aponeurosis deformations and (b) to examine how contraction intensity influencesin vivohuman muscle and aponeurosis strains during isometric contractions.Methods.Participants (n= 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle.Results.3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity.Discussion.3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.


2016 ◽  
Vol 72 (8) ◽  
pp. 472-478
Author(s):  
Marta Milewska ◽  
Katarzyna Grzelkowska-Kowalczyk

Skeletal muscle healing after injury can be divided into three distinct but overlapping phases. The destruction phase is characterized by rupture followed by necrosis of muscle fibers, formation of hematoma and inflammatory reaction. During the repair phase a necrotic tissue is phagocyted by macrophages, muscle fibers are regenerating and connective tissue scars are formed. The remodeling phase concerns the period when regenerating muscle fibers mature, scar contraction and reorganization occurs and the muscle recovers its functional efficiency. Proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and growth factors (FGF, IGF, TGF-β, HGF) play a critical role in all phases of muscle repair. Moreover, chemokines expressed at early stages of myogenesis can regulate the survival and proliferation of myoblasts. Chemokines expressed in vivo in muscle cells can directly influence myogenesis, but can also act in a paracrine manner by recruiting the immune cells (macrophages) to injured skeletal muscles, which is crucial for the regeneration process. Identification of molecules regulating myogenesis, like cytokines, chemokines and growth factors, contributes to the exploration of molecular mechanisms that can improve muscle regeneration after injury, diseases, surgery and increase the effectiveness of cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document