scholarly journals Active diffusion in oocytes nonspecifically centers large objects during prophase I and meiosis I

2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Alexandra Colin ◽  
Gaëlle Letort ◽  
Nitzan Razin ◽  
Maria Almonacid ◽  
Wylie Ahmed ◽  
...  

Nucleus centering in mouse oocytes results from a gradient of actin-positive vesicle activity and is essential for developmental success. Here, we analyze 3D model simulations to demonstrate how a gradient in the persistence of actin-positive vesicles can center objects of different sizes. We test model predictions by tracking the transport of exogenous passive tracers. The gradient of activity induces a centering force, akin to an effective pressure gradient, leading to the centering of oil droplets with velocities comparable to nuclear ones. Simulations and experimental measurements show that passive particles subjected to the gradient exhibit biased diffusion toward the center. Strikingly, we observe that the centering mechanism is maintained in meiosis I despite chromosome movement in the opposite direction; thus, it can counteract a process that specifically off-centers the spindle. In conclusion, our findings reconcile how common molecular players can participate in the two opposing functions of chromosome centering versus off-centering.

2017 ◽  
Vol 83 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Peter M. Yaworsky ◽  
Brian F. Codding

Explaining how and why populations settle a new landscape is central to many questions in American archaeology. Recent advances in settlement research have adopted predictions from the Ideal Free Distribution model (IFD). While tests of IFD predictions to date rely either on archaeologically derived coarse-grained diachronic data or ethnographically derived fine-grained synchronic data, here we provide the first test using historically derived data that is both fine-grained and diachronic. Fine-grain diachronic data allow us to test model predictions at a temporal scale in line with human settlement decisions and to validate proxies for application in archaeological contexts. To test model predictions pertaining to the relationship between population density and habitat quality, we use data from the historical settlement of Utah. The results demonstrate a negative relationship between population density and the quality of habitats occupied. These results are consistent with IFD predictions, suggesting that Euro-American settlement of Utah resulted from individuals attempting to maximize individual returns via agricultural productivity. Our results provide a quantitative and testable explanation for population dispersion over time and explain the spatial distribution of population density today. The results support predictions derived from a general theory of behavior, providing an explanatory framework for colonization events worldwide.


1992 ◽  
Vol 101 (3) ◽  
pp. 547-559 ◽  
Author(s):  
M. Hatsumi ◽  
S.A. Endow

The Drosophila microtubule motor protein, nonclaret disjunctional (ncd), is required for proper chromosome distribution in meiosis and mitosis. We have examined the meiotic and mitotic divisions in wild-type Drosophila oocytes and early embryos, and the effects of three ncd mutants (cand, ncd and ncdD) on spindle structure and chromosome movement. The ncd mutants cause abnormalities in spindle structure early in meiosis I, and abnormal chromosome configurations throughout meiosis I and II. Defective divisions continue in early embryos of the motor null mutant, cand, with abnormal early mitotic spindles. The effects of mutants on spindle structure suggest that ncd is required for proper meiotic spindle assembly, and may play a role in forming or maintaining spindle poles in meiosis. The disruption of normal meiotic and mitotic chromosome distribution by ncd mutants can be attributed to its role as a spindle motor, although a role for ncd as a chromosome-associated motor protein is not excluded. The ncd motor protein functions not only in meiosis, but also performs an active role in the early mitotic divisions of the embryo.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Z. J. Jiang ◽  
J. Wang ◽  
Y. Huang

The charged particles produced in nucleus–nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa–Bjorken model, and freeze out into charged particles from a time-like hypersurface with a proper time of [Formula: see text]. The rapidity distribution of this part of charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu–Cu collisions at [Formula: see text] and 62.4[Formula: see text]GeV, respectively. The model predictions are consistent with experimental measurements.


1996 ◽  
Vol 14 (9) ◽  
pp. 986-1015 ◽  
Author(s):  
L. Eymard ◽  
S. Planton ◽  
P. Durand ◽  
C. Le Visage ◽  
P. Y. Le Traon ◽  
...  

Abstract. The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.


2020 ◽  
pp. 002383092094808
Author(s):  
Chenhao Chiu ◽  
Yu-An Lu

Syllable-final nasals /n/ and /ŋ/ in Taiwan Mandarin have been reported to be undergoing merging. Perceptual studies have reported that the alleged merging is context-sensitive and the merging directions are vowel-dependent. These findings have been mostly attributed to dialectal and social factors. The current study uses ultrasonography to capture postures of the entire tongue during the production of syllable-final nasals. The results, though confirming previous findings that the merging directions of syllable-final nasals are vowel-dependent, are best accounted for by the biomechanics of the tongue, as supported by computational 3D model simulations. Furthermore, for some speakers, although nasals were merged in terms of tongue posture, the degrees of nasalization of the preceding vowel were contrastive, suggesting that the merging process may be incomplete.


Author(s):  
Alexandra Simonenko ◽  
Anne Carlier

AbstractThis article investigates the spread of the le/la/les-forms in the diachrony of French on the basis of large-scale corpora. It focuses on the issue of their “mixed” distribution viz. the observation that during a long period of time the le/la/les-forms in French do not pattern as either (anaphoric) demonstratives from which they originate (Late Latin ille), nor as (uniqueness-based) definites, which they end up becoming in Modern French. We model the phenomenon as a competition between two grammars which ascribe different Logical Forms to the l-forms and test model predictions in contexts which differ with respect to whether they satisfy the relevant conditions for either demonstrative or definite semantics. We also suggest that this change was part of a larger change involving the spread of presupposition triggers within noun phrases. We show that our model correctly predicts the relative rates of determiner spread in various contexts.


Urban Science ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 34
Author(s):  
Mahbubur Meenar ◽  
Jennifer Kitson

In the last two decades, urban planners have embraced digital technologies to complement traditional public participation processes; research on the impact of smarter digital instruments, such as immersive virtual reality (IVR), however, is scant. We recruited 40 focus group participants to explore various formats of spatial planning scenario simulations in Glassboro, NJ, USA. Our study finds that the level of participation, memory recalls of scenarios, and emotional responses to design proposals are higher with multi-sensory and multi-dimensional IVR simulations than with standard presentations such as 2D videos of 3D model simulations, coupled with verbal presentations. We also discuss the limitations of IVR technology to assist urban planning practitioners in evaluating its potential in their own participatory planning efforts.


Geophysics ◽  
1994 ◽  
Vol 59 (9) ◽  
pp. 1342-1351 ◽  
Author(s):  
Sheila Peacock ◽  
Clive McCann ◽  
Jeremy Sothcott ◽  
Timothy R. Astin

Ultrasonic compressional‐ and shear‐wave attenuation in water‐saturated Carrara Marble increase with increasing crack density and decreasing effective pressure. Between 0.4 and 1.0 MHz, empirical linear relationships between 1/Q and crack density CD were found to be: CD = 1.96 ± 0.63 × 1/Q, for compressional waves and CD = 6.7 ± 1.5 × 1/Q, for shear waves.


Sign in / Sign up

Export Citation Format

Share Document