scholarly journals A BLOC-1–AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers

2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Shanna L. Bowman ◽  
Linh Le ◽  
Yueyao Zhu ◽  
Dawn C. Harper ◽  
Anand Sitaram ◽  
...  

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1–dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3–BLOC-1 super-complex.

Background and Aims: SNARE proteins are composed of a combination of SNAP-23, Stx-4, and VAMP-2 isoforms that are significantly expressed in skeletal muscle. These proteins control the transport of GLUT4 to the cell membranes. The modifications in the expression of SNARE proteins can cause Type 2 diabetes. The present study aimed to assess the effect of metformin on the expression of these proteins in rats. Materials and Methods: For the purpose of the study, 40 male Wistar rats were randomly selected. Streptozotocin and Nicotinamide were used for the induction of type 2 diabetes. The animals were assigned to five groups (n=8), including healthy and diabetic groups as control, as well as three experimental groups which were treated with different doses of metformin (100, 150, and 200 mg/kg body weight) for 30 days. The quantitative reverse transcription PCR (RT-qPCR) method was applied to evaluate the expression of SNARE complex proteins.. Results: Based on the results, metformin (100, 150, and 200 mg/kg body weight) decreased serum glucose levels and increased serum insulin levels. This difference in dose of 200 mg/kg body weight was statistically significant (P<0.05). Moreover, all three doses of metformin increased the expression of SNAP- 23, syntaxin-4, and VAMP-2 proteins in skeletal muscle tissue. Metformin at a dose of 200 mg/kg body weight demonstrated the most significant effects (P<0.05). Conclusion: As evidenced by the results of the current study, another anti-diabetic mechanism of metformin is to increase the expression of SNARE proteins, which effectively improves insulin resistance and lowers blood glucose.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Cristina Nogueira ◽  
Patrik Erlmann ◽  
Julien Villeneuve ◽  
António JM Santos ◽  
Emma Martínez-Alonso ◽  
...  

TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.


Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1235-1246 ◽  
Author(s):  
Matjaž Stenovec ◽  
Paula P. Gonçalves ◽  
Robert Zorec

Abstract In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 μm2, which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening.


2020 ◽  
Author(s):  
R Venkat Kalyana Sundaram ◽  
Huaizhou Jin ◽  
Feng Li ◽  
Tong Shu ◽  
Jeff Coleman ◽  
...  

ABSTRACTSynaptic vesicle fusion is mediated by membrane-bridging complexes formed by SNARE proteins - VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the pre-synaptic membrane. Accumulating evidence suggest that chaperones Munc18-1 and Munc13-1 co-operatively catalyze SNARE assembly via an intermediate ‘template’ complex containing Syntaxin-1 and VAMP2. How SNAP25 is chaperoned into this nascent complex remains a mystery. Here we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 ‘linker’ region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and presumably bound in ~1:1 stoichiometry by the self-assembled Munc13-1 nanoclusters. Our data suggests that Munc13-1’s capacity to bind all three synaptic SNARE proteins likely underlie its chaperone function.


IUCrJ ◽  
2014 ◽  
Vol 1 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Asma Rehman ◽  
Julia K. Archbold ◽  
Shu-Hong Hu ◽  
Suzanne J. Norwood ◽  
Brett M. Collins ◽  
...  

Membrane fusion is essential for human health, playing a vital role in processes as diverse as neurotransmission and blood glucose control. Two protein families are key: (1) the Sec1p/Munc18 (SM) and (2) the solubleN-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins. Whilst the essential nature of these proteins is irrefutable, their exact regulatory roles in membrane fusion remain controversial. In particular, whether SM proteins promote and/or inhibit the SNARE-complex formation required for membrane fusion is not resolved. Crystal structures of SM proteins alone and in complex with their cognate SNARE proteins have provided some insight, however, these structures lack the transmembrane spanning regions of the SNARE proteins and may not accurately reflect the native state. Here, we review the literature surrounding the regulatory role of mammalian Munc18 SM proteins required for exocytosis in eukaryotes. Our analysis suggests that the conflicting roles reported for these SM proteins may reflect differences in experimental design. SNARE proteins appear to require C-terminal immobilization or anchoring, for example through a transmembrane domain, to form a functional fusion complex in the presence of Munc18 proteins.


2019 ◽  
Author(s):  
Zhenyong Wu ◽  
Nadiv Dharan ◽  
Sathish Thiyagarajan ◽  
Ben O’Shaughnessy ◽  
Erdem Karatekin

ABSTRACTAll membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered vesicular release of neurotransmitters and hormones. Expansion of this small pore to release cargo molecules is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins, beyond its established role in coupling calcium influx to fusion pore opening. Our results suggest that fusion pore dilation by Syt1 requires interactions with SNAREs, PI(4,5)P2, and calcium. Pore opening was abolished by a mutation of the tandem C2 domain (C2AB) hydrophobic loops of Syt1, suggesting that their calcium-induced insertion into the membrane is required for pore opening. We propose that loop insertion is also required for pore expansion, but through a distinct mechanism. Mathematical modelling suggests that membrane insertion re-orients the C2 domains bound to the SNARE complex, rotating the SNARE complex so as to exert force on the membranes in a mechanical lever action that increases the intermembrane distance. The increased membrane separation provokes pore dilation to offset a bending energy penalty. We conclude that Syt1 assumes a critical role in calcium-dependent fusion pore dilation during neurotransmitter and hormone release.SIGNIFICANCE STATEMENTMembrane fusion is a fundamental biological process, required for development, infection by enveloped viruses, fertilization, intracellular trafficking, and calcium-triggered release of neurotransmitters and hormones when cargo-laden vesicles fuse with the plasma membrane. All membrane fusion reactions proceed through an initial, nanometer-sized fusion pore which can flicker open-closed multiple times before expanding or resealing. Pore expansion is required for efficient cargo release, but underlying mechanisms are poorly understood. Using a combination of single-pore measurements and quantitative modeling, we suggest that a complex between the neuronal calcium sensor Synaptotagmin-1 and the SNARE proteins together act as a calcium-sensitive mechanical lever to force the membranes apart and enlarge the pore.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Travis J Eisemann ◽  
Frederick Allen ◽  
Kelly Lau ◽  
Gregory R Shimamura ◽  
Philip D Jeffrey ◽  
...  

Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM–Qa-SNARE complex, Vps45–Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45–Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.


2019 ◽  
Vol 116 (18) ◽  
pp. 8699-8708 ◽  
Author(s):  
Nils-Alexander Lakomek ◽  
Halenur Yavuz ◽  
Reinhard Jahn ◽  
Ángel Pérez-Lara

Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Amit Srivastava ◽  
Carol A Woolford ◽  
Elizabeth W Jones

Abstract Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional mutants. Characterization of mutants revealed that pep3ts mutants are defective in the endosomal and nonendosomal Golgi to vacuole transport pathways, in the cytoplasm to vacuole targeting pathway, in recycling from the endosome back to the late Golgi, and in endocytosis. PEP3 interacts genetically with two members of the endosomal SNARE complex, PEP12 (t-SNARE) and PEP7 (homologue of mammalian EEA1); Pep3p and Pep5p associate physically with Pep7p as revealed by two-hybrid analysis. Our results suggest that a core Pep3p/Pep5p complex promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. We propose that this complex may be responsible for tethering transport vesicles on target membranes.


Physiology ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 278-285 ◽  
Author(s):  
Qinghua Fang ◽  
Manfred Lindau

The SNARE (Soluble NSF Attachment protein REceptor) complex, which in mammalian neurosecretory cells is composed of the proteins synaptobrevin 2 (also called VAMP2), syntaxin, and SNAP-25, plays a key role in vesicle fusion. In this review, we discuss the hypothesis that, in neurosecretory cells, fusion pore formation is directly accomplished by a conformational change in the SNARE complex via movement of the transmembrane domains.


Sign in / Sign up

Export Citation Format

Share Document