scholarly journals The Rab7 effector WDR91 promotes autophagy-lysosome degradation in neurons by regulating lysosome fusion

2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Ruxiao Xing ◽  
Hejiang Zhou ◽  
Youli Jian ◽  
Lingling Li ◽  
Min Wang ◽  
...  

The effectors of the Rab7 small GTPase play multiple roles in Rab7-dependent endosome-lysosome and autophagy-lysosome pathways. However, it is largely unknown how distinct Rab7 effectors coordinate to maintain the homeostasis of late endosomes and lysosomes to ensure appropriate endolysosomal and autolysosomal degradation. Here we report that WDR91, a Rab7 effector required for early-to-late endosome conversion, is essential for lysosome function and homeostasis. Mice lacking Wdr91 specifically in the central nervous system exhibited behavioral defects and marked neuronal loss in the cerebral and cerebellar cortices. At the cellular level, WDR91 deficiency causes PtdIns3P-independent enlargement and dysfunction of lysosomes, leading to accumulation of autophagic cargoes in mouse neurons. WDR91 competes with the VPS41 subunit of the HOPS complex, another Rab7 effector, for binding to Rab7, thereby facilitating Rab7-dependent lysosome fusion in a controlled manner. WDR91 thus maintains an appropriate level of lysosome fusion to guard the normal function and survival of neurons.

‘Neuroanatomy and neurophysiology’ covers the anatomy and organization of the central nervous system, including the skull and cervical vertebrae, the meninges, the blood and lymphatic vessels, muscles and nerves of the head and neck, and the structures of the eye, ear, and central nervous system. At a cellular level, the different cell types and the mechanism of transmission across synapses are considered, including excitatory and inhibitory synapses. This is followed by a review of the major control and sensory systems (including movement, information processing, locomotion, reflexes, and the main five senses of sight, hearing, touch, taste, and smell). The integration of these processes into higher functions (such as sleep, consciousness and coma, emotion, memory, and ageing) is discussed, along with the causes and treatments of disorders of diseases such as depression, schizophrenia, epilepsy, addiction, and degenerative diseases.


2017 ◽  
Vol 5 (1) ◽  
pp. 74-78
Author(s):  
V. Tsymbaliuk ◽  
V. Semenova ◽  
L. Pichkur ◽  
O. Velychko ◽  
D. Egorova

The review summarizes the current concepts of cell-tissue and molecular features of development of demyelinating processes in the central nervous system related to multiple sclerosis and its animal model – allergic encephalomyelitis. An analysis of recently published studies of this pathology, carried out with light and electron microscopy and immunohistochemical and molecular genetic methods, is given. New methodological approaches to the study of the pathomorhological aspects of demyelinating disorders allowed receiving in-depth understanding of the etiology and mechanisms of demyelination processes in the brain and spinal cord tissues at the cellular level and identifying the ways to develop effective modern methods of pathogenetic treatment of these diseases using cell therapy.


2020 ◽  
Vol 21 (23) ◽  
pp. 8941
Author(s):  
Seunghyuk Choi ◽  
Dae Ki Hong ◽  
Bo Young Choi ◽  
Sang Won Suh

Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.


1919 ◽  
Vol 1 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Eduard Uhlenhuth

The experiments reported in this article are in full agreement with the facts known about the action of Ca and Mg salts in tetanic animals. In the concentrations used here both Ca lactate and Mg lactate suppressed the muscular convulsions in the tetanic salamander larvæ. The Mg lactate, however, appears to be more effective than the Ca lactate. At any rate the suppression of the tetanic convulsions does not seem to be a specific action of the calcium. The most important result seems to be the fact that the salts used, though they prevented the muscular convulsions, did not prevent the other symptoms of tetany which in the salamander larvæ are very definite and constant. The permanent spasmodic contractions and the paralysis of the muscles developed in spite of the presence of the Ca and Mg, Furthermore, the muscular contractions and the paralysis developed even in such thymus-fed animals in which the convulsions had been suppressed completely; this was the case in one of the animals of the Mg series. From the experiments of Biedl and others it is likely that the tetanic convulsions are due to lesions of the central nervous system, since convulsions of a leg can be prevented by isolating it from the central nervous system by cutting the nerves which connect the muscles with the central nervous system. Evidently these lesions of the central nervous system are the chief factor in tetany, while the convulsions of the muscles are only an effect. In the larvæ of salamanders these lesions find a definite expression in the permanent paralysis of almost the entire muscular system. In the writer's opinion, MacCallum's hypothesis that the tetany toxin has a special affinity for Ca, thereby diminishing the Ca content of the organism, cannot be disproved at present. But the present experiments seem to prove, first, that the tetany-producing substance causes permanent lesions of the nervous system, which lead to permanent spasmodic contractions and paralysis of the muscle even in the absence of tetanic convulsions, and second, that these cannot be prevented by either Ca or Mg. For the most part they result in an early death of the animals no matter whether or not Ca or Mg has been applied. In connection with this fact we wish to mention Biedl's claim that no one has yet succeeded in prolonging the life of parathyroidectomized animals by the application of Ca. From MacCallum's paper, on account of the lack of controls, it cannot be seen whether his parathyroidectomized dogs lived longer with Ca treatment than without. That in spontaneous tetany Ca treatment may effect a cure, as is evident from the report by Howland and Marriott, does not prove that in this case Ca has inhibited tetany as a disease. In spontaneous tetany the period of the action of the tetany-producing substance may be a very short one and the mere prevention of the tetanic convulsions may keep the patient alive until normal function of the glands involved has been restored. The pathological changes which the central nervous system undergoes in this short period may not be severe enough to endanger the life of the patient after the cessation of the action of the tetany toxin. In the light of the facts presented our experiments lead to the following conclusions: 1. The thymus gland excretes a tetany-producing substance which in the normal animal is antagonized in an unknown way by the parathyroids. 2. In animals devoid of parathyroids (salamander larvæ, parathyroidectomized mammals) this substance may, according to MacCallum, reduce the Ca content of the organism; but by far the most dangerous and important quality of this substance is its highly injurious effect upon the central nervous system, which causes permanent spasmodic contractions of the muscles and paralysis of almost the entire muscular system. 3. It is possible to prevent the muscular contractions by introducing Ca salts into the body, though this can be done more effectively by means of Mg salts. 4. No substance, however, has been found so far to antagonize the tetany toxin and to prevent the development of the lesions of the central nervous system caused by the tetany toxin. 5. This explains why in spite of the application of Ca or Mg and in spite of the suppression by these substances of the tetanic convulsions the other symptoms of tetany develop and frequently lead to the death of the animal. 6. Accordingly the most important function of the parathyroids is to prevent the tetany toxin, by antagonizing it, from coming into contact with the central nervous system.


2021 ◽  
Author(s):  
Giacomo Gattoni ◽  
Toby GR Andrews ◽  
Elia Benito Gutierrez

The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that despite the lack of overt segmentation the amphioxus neural tube is highly regionalized at the molecular level. However, little is known about the mechanisms that generate such precise regionalization. Proliferation is a key driver of pattern formation and cell type diversification, but in amphioxus it has never been studied in detail nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos and its contributions to the regionalization of the neural axis. We show that after gastrulation, proliferation pauses to become spatially restricted to the anterior and posterior ends of the neural tube at neurula stages. Only at the onset of larval life, proliferation resumes in the central part of the nervous system. By marking specific populations and inhibiting cell division during neurulation, we demonstrate that proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongate the caudal floor plate. Between these proliferative domains, we find trunk nervous system differentiation is independent from cell division, which decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight multiple roles for proliferation in shaping the amphioxus nervous system.


2020 ◽  
Vol 8 (12) ◽  
Author(s):  
Brandon Truong ◽  
Jose Quiroz ◽  
Ronny Priefer

Alzheimer’s Diseases (AD) is a neurodegenerative disorder characterized by progressive neuronal loss leading to cognitive decline. Although there is yet to be a cure nor a way to reverse the neuronal damage, there are current treatments to amend some of the cognitive symptoms associated with AD. Acetylcholinesterase inhibitors (AChEi) are the primary agents of choice and have had profound implications throughout the past decades. AChEi such as donepezil, rivastigmine, and galantamine mediates and increases cholinergic activities in the central nervous system (CNS), and have been shown to improve and preserve cognition in AD patients. Beyond the current drugs on the market, investigational discoveries continue to explore the potential of safer and more efficacious AChEi agents for the treatment of AD. There have been quite a few challenges, given the high failure rates. Yet, these very trials and studies have been a fundamental step towards better understanding the treatments of AD and have provided some insight on the potential to surpass what is currently available.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 846 ◽  
Author(s):  
Oscar F. Sánchez ◽  
Andrea V. Rodríguez ◽  
José M. Velasco-España ◽  
Laura C. Murillo ◽  
Jhon-Jairo Sutachan ◽  
...  

Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.


2020 ◽  
Vol 38 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Juan R. Malagelada

Background: Interactions between brain and gut have been suspected for centuries but our understanding of the neural centers and neurohormonal links that establish bidirectional regulatory communication between these 2 body systems has advanced significantly in the last decades. The label “brain-gut axis” designates a useful but deceivingly simple concept, since the mechanistic complexity of brain-gut interaction is enormous. Summary: The significance of the brain-gut axis is perhaps best conceived as “a team” since both systems are physiologically coordinated to ensure a healthy status. However, under pathophysiological conditions, the axis also contributes substantially to distort homeostasis. For instance, normal signals emanating from the gut may be inappropriately received and interpreted by the central nervous system that responds by inadequately recruiting other brain structures and generate both symptoms and commands that disturb normal gut activity. Key Messages: Thus, at each end and in the brain-gut connecting routes, there is the potential for altering perceived and unperceived sensations and further impinging on normal function.


Sign in / Sign up

Export Citation Format

Share Document