scholarly journals EVIDENCE FOR A TEMPORAL INCOMPATIBILITY BETWEEN DNA REPLICATION AND DIVISION DURING THE CELL CYCLE OF TETRAHYMENA

1972 ◽  
Vol 53 (3) ◽  
pp. 624-634 ◽  
Author(s):  
William R. Jeffery

The mechanism of coordination between DNA replication and cell division was studied in Tetrahymena pyriformis GL-C by manipulation of the timing of these events with heat shocks and inhibition of DNA synthesis. Preliminary experiments showed that the inhibitor combination methotrexate and uridine (M + U) was an effective inhibitor of DNA synthesis. Inhibition of the progression of DNA synthesis with M + U in exponentially growing cells, in which one S period usually occurs between two successive divisions, or in heat-shocked cells, when successive S periods are known to occur between divisions, resulted in the complete suppression of the following division. In further experiments in which the division activities were reassociated with the DNA synthetic cycle by premature termination of the heat-shock treatment, it was shown that (a) the completion of one S period during the treatment was sufficient for cell division, (b) the beginning of division events suppressed the initiation of further S periods, and (c) if further S periods were initiated while the heat-shock treatment was continued, division preparations could not begin until the necessary portion of the S period was completed, even though DNA had previously been duplicated. It was concluded that a temporal incompatibility exists between DNA synthesis and division which may reflect a coupling mechanism which insures their coordination during the normal cell cycle.

1973 ◽  
Vol 59 (1) ◽  
pp. 1-11 ◽  
Author(s):  
William R. Jeffery ◽  
Joseph Frankel ◽  
Lawrence E. de Bault ◽  
Leslie M. Jenkins

The temporal schedule of DNA replication in heat-synchronized Tetrahymena was studied by autoradiographic and cytofluorometric methods. It was shown that some cells, which were synchronized by selection of individual dividing cells or by temporary thymidine starvation, incorporated [3H]thymidine into macronuclei in a periodic fashion during the heat-shock treatment. It was concluded that supernumerary S periods occurred while cell division was blocked by high temperature. The proportion of cells which initiated supernumerary S periods was found to be dependent on the duration of the heat-shock treatment and on the cell cycle stage when the first heat shock was applied. Cytofluorometric measurements of Feulgen-stained macronuclei during the heat-shock treatment indicated that the DNA complement of these cells was substantially increased and probably duplicated during the course of each S period. Estimates of DNA content also suggested that the rate of DNA synthesis progressively declined during long heat-shock treatments. These results indicate that the mechanism which brings about heat-induced division synchrony is not an interruption of the process of DNA replication. Further experiments were concerned with the regulation of DNA synthesis during the first synchronized division cycle. It was shown that participation in DNA synthesis at this time increased as more cells were able to conclude the terminal S period during the preceding heat-shock treatment. It is suggested that a discrete period of time is necessary after the completion of DNA synthesis before another round of DNA synthesis can be initiated.


1970 ◽  
Vol 46 (3) ◽  
pp. 533-543 ◽  
Author(s):  
William R. Jeffery ◽  
Kenneth D. Stuart ◽  
Joseph Frankel

The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.


2000 ◽  
Vol 20 (20) ◽  
pp. 7613-7623 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccharomyces cerevisiae andDrosophila spp., triggers exit from mitosis and during G1 prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference with the APC-Cdh1 dissociation at the G1/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G1/S transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27Kip1 cyclin-dependent kinase inhibitor. Consequently, failure to inactivate APC-Cdh1 beyond the G1/S transition not only inhibited productive cell division but also supported slow but uninterrupted DNA replication, precluding S-phase exit and causing massive overreplication of the genome. Our data suggest that timely oscillation of the APC-Cdh1 ubiquitin ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells.


1994 ◽  
Vol 107 (1) ◽  
pp. 253-265 ◽  
Author(s):  
I.T. Todorov ◽  
R. Pepperkok ◽  
R.N. Philipova ◽  
S.E. Kearsey ◽  
W. Ansorge ◽  
...  

Molecular cloning and characterisation of a human nuclear protein designated BM28 is reported. On the amino acid level this 892 amino acid protein, migrating on SDS-gels as a 125 kDa polypeptide, shares areas of significant similarity with a recently defined family of early S phase proteins. The members of this family, the Saccharomyces cerevisiae Mcm2p, Mcm3p, Cdc46p/Mcm5p, the Schizosaccharomyces pombe Cdc21p and the mouse protein P1 are considered to be involved in the onset of DNA replication. The highest similarity was found with Mcm2p (42% identity over the whole length and higher than 75% over a conservative region of 215 amino acid residues), suggesting that BM28 could represent the human homologue of the S. cerevisiae MCM2. Using antibodies raised against the recombinant BM28 the corresponding antigen was found to be localised in the nuclei of various mammalian cells. Microinjection of anti-BM28 antibody into synchronised mouse NIH3T3 or human HeLa cells presents evidence for the involvement of the protein in cell cycle progression. When injected in G1 phase the anti-BM28 antibody inhibits the onset of subsequent DNA synthesis as tested by the incorporation of bromodeoxyuridine. Microinjection during the S phase had no effect on DNA synthesis, but inhibits cell division. The data suggest that the nuclear protein BM28 is required for two events of the cell cycle, for the onset of DNA replication and for cell division.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Nivaldo Ferreira do Nascimento ◽  
Rafaela Manchin Bertolini ◽  
Lucia Soares Lopez ◽  
Laura Satiko Okada Nakaghi ◽  
Paulo Sérgio Monzani ◽  
...  

Summary Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.


1988 ◽  
Vol 106 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
L A Mizzen ◽  
W J Welch

Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.


1986 ◽  
Vol 6 (1) ◽  
pp. 90-96 ◽  
Author(s):  
T McClanahan ◽  
K McEntee

Two Saccharomyces cerevisiae genes isolated in a differential hybridization screening for DNA damage regulation (DDR genes) were also transcriptionally regulated by heat shock treatment. A 0.45-kilobase transcript homologous to the DDRA2 gene and a 1.25-kilobase transcript homologous to the DDR48 gene accumulated after exposure of cells to 4-nitroquinoline-1-oxide (NQO; 1 to 1.5 microgram/ml) or brief heat shock (20 min at 37 degrees C). The DDRA2 transcript, which was undetectable in untreated cells, was induced to high levels by these treatments, and the DDR48 transcript increased more than 10-fold as demonstrated by Northern hybridization analysis. Two findings argue that dual regulation of stress-responsive genes is not common in S. cerevisiae. First, two members of the heat shock-inducible hsp70 family of S. cerevisiae, YG100 and YG102, were not induced by exposure to NQO. Second, at least one other DNA-damage-inducible gene, DIN1, was not regulated by heat shock treatment. We examined the structure of the induced RNA homologous to DDRA2 after heat shock and NQO treatments by S1 nuclease protection experiments. Our results demonstrated that the DDRA2 transcript initiates equally frequently at two sites separated by 5 base pairs. Both transcriptional start sites were utilized when cells were exposed to either NQO or heat shock treatment. These results indicate that DDRA2 and DDR48 are members of a unique dually regulated stress-responsive family of genes in S. cerevisiae.


1984 ◽  
Vol 4 (4) ◽  
pp. 591-598
Author(s):  
J Cappello ◽  
C Zuker ◽  
H F Lodish

The Dictyostelium genome contains 40 copies of a 4.7-kilobase repetitive and apparently transposable DNA sequence (DIRS-1) and about 250 smaller elements that appear to be deletions or rearrangements of DIRS-1. Transcripts of these sequences are induced during differentiation and also by heat shock treatment of growing cells. We showed that one such cloned element, pB41.6 (2.5 kilobases) contains a nucleotide sequence identical to the Drosophila consensus heat shock promotor. To test whether this sequence might indeed control the expression of DIRS-1-related RNAs, we have cloned this genomic segment into yeast cells. In yeast cells, 41.6 directs synthesis of a 1.7-kilobase RNA that is induced at least 10-fold by heat shock. Transcription initiates at about 124 bases 3' of the putative promotor sequence and terminates within the 41.6 insert. A 381-base-pair subclone that contains the putative promotor sequence is sufficient to induce the heat shock response of 41.6 in yeast cells.


1980 ◽  
Vol 44 (1) ◽  
pp. 375-394
Author(s):  
N.N. Bobyleva ◽  
B.N. Kudrjavtsev ◽  
I.B. Raikov

The DNA content of isolated micronuclei, differentiating macronuclei (macronuclear Anlagen), and adult macronuclei of Loxodes magnus was measured cytofluorimetrically in preparations stained with a Schiff-type reagent, auramine-SO2, following hydrochloric acid hydrolysis. The DNA content of the youngest macronuclear Anlagen proved to be the same as that of telophasic micronuclei (2 c). The Anlagen thus differentiate from micronuclei which are still in G1. The quantity of DNA in the macronuclear Anlagen thereafter rises to the 4-c level, simultaneously with DNA replication in the micronuclei which immediately follows mitosis. In non-dividing animals most micronuclei are already in G2. Adult macronuclei here contain on average 1.5 times more DNA than the micronuclei; their DNA content is about 5–6 c (in some individual nuclei, up to 10 c). These data are consistent with autoradiographic evidence indicating a weak DNA synthesis in the macronuclei of Loxodes and make likely the existence of partial DNA replication (e.g. gene amplification) in the macronuclei. The DNA content of adult macronuclei isolated from dividing animals proved to be significantly smaller than that of macronuclei isolated from non-dividing specimens of the same clone. In 3 clones studied, the former value amounted on average to 71–79, 78 and 95% of the latter, respectively. This drop of DNA content cannot be explained by ‘dilution’ of the old macronuclei with newly formed ones. The quantity of DNA in adult macronuclei thus seems to undergo cyclical changes correlated with cytokinesis, despite the fact that, in Loxodes magnus, the macronuclei themselves never divide and are simply segregated at every cell division. The macronuclei of Loxodes can be termed paradiploid or hyperdiploid.


Sign in / Sign up

Export Citation Format

Share Document