scholarly journals Specific epidermal protein markers are modulated during calcium-induced terminal differentiation.

1983 ◽  
Vol 96 (6) ◽  
pp. 1809-1814 ◽  
Author(s):  
J R Stanley ◽  
S H Yuspa

Extracellular calcium concentration has been shown to be an important determinant of proliferation rate in a number of cell culture models. Recently, the role of calcium as a regulator of cellular differentiation has also become apparent. This effect of calcium was exemplified by the discovery that keratinocytes of mouse or human origin grew as a proliferating monolayer in medium with a calcium concentration of 0.02-0.09 mM but that proliferation ceased and cells stratified and cornified when calcium was increased greater than 0.1 mM. While the morphological and biological effects of changes in calcium concentration are dramatic in keratinocyte cultures, it has been difficult to identify specific protein changes associated with the modulation of maturation. In vivo, however, several proteins that are markers for stratified squamous epithelia have been identified by specific autoimmune sera. Pemphigoid antigen is a 220-kdalton protein found in the basement membrane and closely associated with the plasma membrane of the basal cell. Pemphigus antigen is a 130-kdalton glycoprotein found on the cell surface of stratifying epithelial cells. Immunofluorescence staining of cells cultured in low Ca2+ or cells switched to high Ca2+ for 48 h before staining demonstrated that pemphigoid antigen was detected in low Ca2+ cultures but was diminished or absent in high Ca2+ cultures and that pemphigus antigen was seen only in high Ca2+ cultures. The synthesis of each antigen was studied in immunoprecipitates of cell lysates radiolabeled with 14C-amino acids or D-[1-14C]glucosamine. Pemphigoid antigen was synthesized mainly by proliferating cells in low Ca2+ medium and its synthesis was decreased by greater than 90% in cells switched to high Ca2+ medium. In contrast, synthesis of pemphigus antigen was detected only in stratifying cells cultured in high Ca2+ medium. These studies indicate that extracellular calcium concentrations which modulate the transition between proliferating and stratifying epidermal cells also modulate, in parallel, the synthesis of specific marker proteins for these cell types.

Endocrine ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 611-617
Author(s):  
Judit Tőke ◽  
Gábor Czirják ◽  
Péter Enyedi ◽  
Miklós Tóth

AbstractThe calcium-sensing receptor (CaSR) provides the major mechanism for the detection of extracellular calcium concentration in several cell types, via the induction of G-protein-coupled signalling. Accordingly, CaSR plays a pivotal role in calcium homeostasis, and the CaSR gene defects are related to diseases characterized by serum calcium level changes. Activating mutations of the CaSR gene cause enhanced sensitivity to extracellular calcium concentration resulting in autosomal dominant hypocalcemia or Bartter-syndrome type V. Inactivating CaSR gene mutations lead to resistance to extracellular calcium. In these cases, familial hypocalciuric hypercalcaemia (FHH1) or neonatal severe hyperparathyroidism (NSHPT) can develop. FHH2 and FHH3 are associated with mutations of genes of partner proteins of calcium signal transduction. The common polymorphisms of the CaSR gene have been reported not to affect the calcium homeostasis itself; however, they may be associated with the increased risk of malignancies.


2019 ◽  
Author(s):  
Benedikt Kirchner ◽  
Dominik Buschmann ◽  
Vijay Paul ◽  
Michael W. Pfaffl

Abstract Background Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. Results To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Conclusions Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dmitry O Traktuev ◽  
Daniel N Prater ◽  
Aravind R Sanjeevaiah ◽  
Stephanie Merfeld-Clauss ◽  
Brian H Johnstone ◽  
...  

Introduction Both Endothelial progenitor cells (EPC) and adipose stromal cells (ASC) are under investigation as therapies for cardiovascular diseases. Both cell types are capable of modulating vascular assembly and are, thereby, capable of directly promoting revascularization of ischemic tissues. We have shown that EPC differentiate into endothelial cells to form small vessels, whereas ASC have pericytic properties and naturally stabilize vessels. In this study we tested the possibility that ASC would interact with EPC to assemble de novo vessels in collagen in an in vivo chimeric implant. Methods and Results Collagen implants embedded with either umbilical cord blood EPC or adult ASC or a 4:1 mixture of both (2x10 6 cells/ml) were implanted subcutaneously into NOD/SCID mice. After 14 d implants were harvested and evaluated by immunohistochemistry. There was a pronounced difference among the groups in vascular network assembly. The majority of vessels formed in the EPC and ASC monocultures were small capillaries bounded by a single endothelial layer. Conversely, 100% of the plugs embedded with both cell types were highly invaded with multilayered arteriolar vessels. The density of the CD31 + vessels in the EPC and co-culture plugs was 26.6 ± 5.8 and 122.4 ± 9.8 per mm 2 , respectively. No CD31 + cells of human origin were detected in the ASC monocultures, indicating that ASC, which do not express this EC-specific marker, engage murine EC or form pseudovessels in this system. The density of α-SMA + vessels with lumens per mm 2 was 13.1 ± 3.6 (EPC), 10.2 ± 3.5 (ASC) and 124.7 ± 19.7 (co-culture). The total overlap of CD31 + and SMA + vessels demonstrates that mature, multilayered conduits were formed with the co-culture. Moreover, the majority of these vessels were filled with erythrocytes (92.5 ± 16.2 per mm 2 ), indicating inosculation with the native vasculature, which was confirmed by ultrasound with echogenic microbubbles and persisted to at least 4 months. Conclusion This study is the first to demonstrate that non-transformed human EPC and ASC cooperatively form mature and stable vasculature with subsequent functional integration into a host vasculature system.


2021 ◽  
Author(s):  
Nan He ◽  
Sirisha Thippabhotla ◽  
Cuncong Zhong ◽  
Zachary Greenberg ◽  
Liang Xu ◽  
...  

AbstractExtracellular vesicles (EVs), particularly exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping EV multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinary challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact small EVs. This specific EV isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic EV analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome. The NanoPoms prepared sEVs also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, and is applicable to nearly all types of biological fluids and amenable for scale up and high-throughput EV isolation.


2021 ◽  
Author(s):  
Nan He ◽  
Sirisha Thippabhotla ◽  
Cuncong Zhong ◽  
Zachary Greenberg ◽  
Liang Xu ◽  
...  

Abstract Extracellular vesicles (EVs), particularly nano-sized small EV exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping exosome multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinarily challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact exosome. This specific exosome isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic exosome analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome. The NanoPoms prepared exosomes also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, which is applicable to nearly all types of biological fluids and amenable for enrichment, scale up, and high-throughput exosome isolation.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Andrea Mair ◽  
Shou-Ling Xu ◽  
Tess C Branon ◽  
Alice Y Ting ◽  
Dominique C Bergmann

Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and Nicotiana benthamiana and versatile vectors enable customization by plant researchers.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Martina Milani ◽  
Eleonora Mammarella ◽  
Simona Rossi ◽  
Chiara Miele ◽  
Serena Lattante ◽  
...  

Abstract Background An increasing number of studies evidences that amyotrophic lateral sclerosis (ALS) is characterized by extensive alterations in different cell types and in different regions besides the CNS. We previously reported the upregulation in ALS models of a gene called fibroblast-specific protein-1 or S100A4, recognized as a pro-inflammatory and profibrotic factor. Since inflammation and fibrosis are often mutual-sustaining events that contribute to establish a hostile environment for organ functions, the comprehension of the elements responsible for these interconnected pathways is crucial to disclose novel aspects involved in ALS pathology. Methods Here, we employed fibroblasts derived from ALS patients harboring the C9orf72 hexanucleotide repeat expansion and ALS patients with no mutations in known ALS-associated genes and we downregulated S100A4 using siRNA or the S100A4 transcriptional inhibitor niclosamide. Mice overexpressing human FUS were adopted to assess the effects of niclosamide in vivo on ALS pathology. Results We demonstrated that S100A4 underlies impaired autophagy and a profibrotic phenotype, which characterize ALS fibroblasts. Indeed, its inhibition reduces inflammatory, autophagic, and profibrotic pathways in ALS fibroblasts, and interferes with different markers known as pathogenic in the disease, such as mTOR, SQSTM1/p62, STAT3, α-SMA, and NF-κB. Importantly, niclosamide in vivo treatment of ALS-FUS mice reduces the expression of S100A4, α-SMA, and PDGFRβ in the spinal cord, as well as gliosis in central and peripheral nervous tissues, together with axonal impairment and displays beneficial effects on muscle atrophy, by promoting muscle regeneration and reducing fibrosis. Conclusion Our findings show that S100A4 has a role in ALS-related mechanisms, and that drugs such as niclosamide which are able to target inflammatory and fibrotic pathways could represent promising pharmacological tools for ALS.


2021 ◽  
Author(s):  
Martina Milani ◽  
Eleonora Mammarella ◽  
Simona Rossi ◽  
Serena Lattante ◽  
Mario Sabatelli ◽  
...  

Abstract BackgroundAn increasing number of studies evidence that amyotrophic lateral sclerosis (ALS) is characterized by extensive alterations in different cell types and in different regions besides the CNS. We previously reported the up-regulation in ALS models of a gene called fibroblast-specific protein (FSP)-1 or S100A4, generally recognized as a pro-inflammatory and profibrotic factor. Since inflammation and fibrosis are often mutual-sustaining events that contribute to establish a hostile environment for organ functioning, the comprehension of the elements responsible for these interconnected pathways is crucial to disclose novel aspects involved in ALS pathology.MethodsHere we employed fibroblasts derived from ALS patients harboring the C9orf72 hexanucleotide repeat expansion and sporadic ALS patients with no mutations in known ALS-associated genes and we downregulated S100A4 using siRNA or the S100A4 transcriptional inhibitor niclosamide. Mice overexpressing human FUS were adopted to assess the effects of niclosamide in vivo on ALS pathology.ResultsWe demonstrated that S100A4 underlies impaired autophagy and a profibrotic phenotype, which characterize ALS fibroblasts. Indeed, its inhibition reduces inflammatory, autophagic and profibrotic pathways in ALS fibroblasts, and to interfere with different markers known as pathogenic in the disease, such as mTOR, SQSTM1/p62, STAT3, α-SMA and NF-κB. Importantly, niclosamide in vivo treatment of ALS-FUS mice reduces the expression of S100A4, α-SMA and PDGFRβ in the spinal cord, as well as gliosis in central and peripheral nervous tissues, together with axonal impairment and displays beneficial effects on muscle atrophy, by promoting muscle regeneration and reducing fibrosis.ConclusionOur findings show that S100A4 has a role in ALS-related mechanisms, and that drugs such as niclosamide that are able to target inflammatory and fibrotic pathways could represent promising pharmacological tools for ALS.


2019 ◽  
Author(s):  
Andrea Mair ◽  
Shou-Ling Xu ◽  
Tess C. Branon ◽  
Alice Y. Ting ◽  
Dominique C. Bergmann

AbstractDefining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurboID), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurboID in Arabidopsis and N. benthamiana and versatile vectors enable customization by plant researchers.


Author(s):  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
N Mahalakshmi ◽  
...  

Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.


Sign in / Sign up

Export Citation Format

Share Document