scholarly journals Platelet-collagen adhesion: inhibition by a monoclonal antibody that binds glycoprotein IIb.

1984 ◽  
Vol 99 (6) ◽  
pp. 2056-2060 ◽  
Author(s):  
P J Shadle ◽  
M H Ginsberg ◽  
E F Plow ◽  
S H Barondes

To identify platelet surface structures involved in adhesion to collagen, the effect of 16 murine antiplatelet membrane hybridoma antibodies were tested in a defined, in vitro assay. Four of these antibodies inhibited platelet-collagen adhesion and reacted with a polypeptide with Mr approximately 125,000, as determined by immunoblots after gel electrophoresis under reducing conditions. Through detailed studies with one of these antibodies, the monoclonal antibody PMI-1, the relevant antigen was identified as platelet glycoprotein IIb alpha, based upon (a) co-migration with this glycoprotein in two-dimensional gel electrophoresis and (b) co-purification by immunoaffinity chromatography with a protein with apparent Mr identical to that of glycoprotein III, under conditions in which glycoproteins IIb and III form a complex. Univalent antibody fragments prepared from monoclonal antibody PMI-1 inhibited greater than 80% of platelet-collagen adhesion, and inhibition was completely blocked by the immunopurified antigen. These results indicate that glycoprotein IIb participates in some aspect of platelet-collagen adhesion. In contrast, the purified antigen only partially neutralized a polyclonal antiserum that blocked platelet-collagen adhesion, to a maximum of approximately 25%, at saturating antigen concentrations. Thus, by these immunological criteria, glycoprotein IIb is not the only molecule involved in this process.

1998 ◽  
Vol 80 (09) ◽  
pp. 437-442 ◽  
Author(s):  
I. Hioki ◽  
K. Onoda ◽  
T. Shimono ◽  
H. Shimpo ◽  
K. Tanaka ◽  
...  

SummaryAlterations in platelet aggregability may play a role in the pathogenesis of qualitative platelet defects associated with cardiopulmonary bypass (CPB). We circulated fresh heparinized whole blood through tubing sets coated with heparin (C group, n = 10) and through non-coated sets (N group, n = 10) as a simulated CPB circuit. Shear stress (108 dyne/cm2)-induced platelet aggregation (hSIPA), plasma von Willebrand factor (vWF) activity and platelet glycoprotein (GP) Ib expression were measured, before, during, and after this in vitro set up of circulation. In the two groups, the extent of hSIPA significantly decreased during circulation and was partially restored after circulation. Decreases in the extent of hSIPA were significantly less with use of heparin-coated circuits. There was an equivalent reduction in plasma vWF activity, in the two groups. Expression of platelet surface GP Ib decreased significantly during circulation and recovered after circulation. Reduction of surface GP Ib expression during circulation was significantly less in the C group than that in the N group. Decrease in surface GP Ib expression correlated (r = 0.88 in either group) with the magnitude of hSIPA, in the two groups. The progressive removal of surface GP Ib was mainly attributed to redistribution of GP Ib from the membrane skeleton into the cytoskeleton. Our observations suggest that use of heparin-coated circuits partly blocks the reduction of hSIPA, as a result of a lesser degree of redistribution of GP Ib.


1991 ◽  
Vol 11 (6) ◽  
pp. 3268-3277 ◽  
Author(s):  
E Maryon ◽  
D Carroll

Homologous recombination of DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient when those molecules are linear and have overlapping homologous ends. It was previously shown that a 5'----3' exonuclease activity in oocytes attacks injected linear DNAs and leaves them with single-stranded 3' tails. We tested the hypothesis that such tailed molecules are early intermediates on the pathway to recombination products. Substrates with 3' tails were made in vitro and injected into oocytes, where they recombined rapidly and efficiently. In experiments with mixed substrates, molecules with 3' tails entered recombination intermediates and products more rapidly than did molecules with flush ends. Molecules endowed in vitro with 5' tails also recombined efficiently in oocytes, but their rate was not faster than for flush-ended substrates. In most cases, the 5' tails served as templates for resynthesis of the 3' strands, regenerating duplex ends which then entered the normal recombination pathway. In oocytes from one animal, some of the 5' tails were removed, and this was exacerbated when resynthesis was partially blocked. Analysis by two-dimensional gel electrophoresis of recombination intermediates from 5'-tailed substrates confirmed that they had acquired 3' tails as a result of the action of the 5'----3' exonuclease. These results demonstrate that homologous recombination in oocytes proceeds via a pathway that involves single-stranded 3' tails. Molecular models incorporating this feature are discussed.


1985 ◽  
Vol 5 (3) ◽  
pp. 586-590
Author(s):  
A M Francoeur ◽  
E K Chan ◽  
J I Garrels ◽  
M B Mathews

HeLa cell La antigen, an RNA-binding protein, was characterized by using two-dimensional gel electrophoresis. Eight isoelectric forms (pI 6 to 7) were observed, many containing phosphate. An in vitro translation product similar in size and antigenicity was identified. The HeLa cell protein purified by using an assay based on ribonucleoprotein reconstitution with adenovirus VA RNAI also comprised several isoelectric forms.


1992 ◽  
Vol 103 (1) ◽  
pp. 233-243
Author(s):  
G. Meyerson ◽  
K.H. Pfenninger ◽  
S. Pahlman

Nerve growth cones of primary neurons are highly enriched in the proto-oncogene product pp60c-src. In order to investigate this molecule further in growing neuronal cells, growth cone and cell body fractions were prepared from human SH-SY5Y neuroblastoma cells differentiated neuronally in vitro under the influence of phorbol ester. The fractions were characterized ultrastructurally and by biochemical criteria. The neuronal (pp60c-srcN) and the fibroblastic (pp60c-src) forms of pp60src are slightly enriched and activated in the growth cones relative to the perikarya. Immunoprecipitates of pp60src from differentiated SH-SY5Y growth cones contain at least four phosphoproteins in addition to pp60src. One of these, pp38, migrates as a 100–140 kDa complex with pp60src under non-reducing conditions of gel electrophoresis. The pp38/pp60src complex is not easily detected in non-differentiated SH-SY5Y cells or perikarya of differentiated SH-SY5Y cells, but it is highly enriched in the growth cone preparation. These data suggest that growth-cone pp60src exists in a disulfide-linked oligomeric complex. The complex appears to be assembled only in the cell periphery and may be dependent upon neuronal differentiation.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 367-383
Author(s):  
T. J. Mohun ◽  
C. D. Lane ◽  
A. Colman ◽  
C. C. Wylie

Protein secretion by Xenopus laevis oocytes and their surrounding follicular cells in vitro has been investigated using two-dimensional gel electrophoresis. Viable oocytes, devoid of follicle layers, were prepared by treatment with collagenase; they retain in full their capacity to synthesize, sequester and export secretory proteins following microinjection with heterologous messenger RNA. Both RNA-injected and normal cells export a large number of endogenous oocyte proteins and, as with heterologous secretory translation products, these proteins are found within the oocyte in a vesicle fraction. Electron microscopy indicates that secretion involves exocytotic release of cortical vesicle contents. The follicular cells themselves also seem to contribute a number of proteins to the incubation medium surrounding isolated oocytes, but the presence of follicle layers is not required for the export of endogenous oocyte proteins.


1981 ◽  
Vol 91 (2) ◽  
pp. 352-360 ◽  
Author(s):  
TW McKeithan ◽  
JL Rosenbaum

The alga polytomella contains several organelles composed of microtubules, including four flagella and hundreds of cytoskeletal microtubules. Brown and co-workers have shown (1976. J. Cell Biol. 69:6-125; 1978, Exp. Cell Res. 117: 313-324) that the flagella could be removed and the cytoskeletans dissociated, and that both structures could partially regenerate in the absence of protein synthesis. Because of this, and because both the flagella and the cytoskeletons can be isolated intact, this organism is particularly suitable for studying tubulin heterogeneity and the incorporation of specific tubulins into different microtubule-containing organelles in the same cell. In order to define the different species of tubulin in polytonella cytoplasm, a (35)S- labeled cytoplasmic fraction was subjected to two cycles of assembly and disassembly in the presence of unlabeled brain tubulin. Comparison of the labeled polytomella cytoplasmic tubulin obtained by this procedure with the tubulin of isolated polytomella flagella by two-dimensional gel electrophoresis showed that, whereas the β-tubulin from both cytoplasmic and flagellar tubulin samples comigrated, the two α-tubulins had distinctly different isoelectic points. As a second method of isolating tubulin from the cytoplasm, cells were gently lysed with detergent and intact cytoskeletons obtained. When these cytoskeletons were exposed to cold temperature, the proteins that were released were found to be highly enriched in tubulin; this tubulin, by itself, could be assembled into microtubules in vitro. The predominant α-tubulin of this in vitro- assembled cytoskeletal tubulin corresponded to the major cytoplasmic α-tubulin obtained by coassembly of labeled polytomella cytoplasmic extract with brain tubulin and was quite distinct from the α-tubulin of purified flagella. These results clearly show that two different microtubule-containing organelles from the same cell are composed of distinct tubulins.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1038-1046 ◽  
Author(s):  
Sylvie Moog ◽  
Pierre Mangin ◽  
Nadège Lenain ◽  
Catherine Strassel ◽  
Catherine Ravanat ◽  
...  

Glycoprotein V (GPV) is a subunit of the platelet GPIb-V-IX receptor for von Willebrand factor and thrombin. GPV is cleaved from the platelet surface during activation by thrombin, but its role in hemostasis is still unknown. It is reported that GPV knockout mice had a decreased tendency to form arterial occluding thrombi in an intravital thrombosis model and abnormal platelet interaction with the subendothelium. In vitro, GPV-deficient platelets exhibited defective adhesion to a collagen type I–coated surface under flow or static conditions. Aggregation studies demonstrated a decreased response of the GPV-deficient platelets to collagen, reflected by an increased lag phase and reduced amplitude of aggregation. Responses to adenosine diphosphate, arachidonic acid, and the thromboxane analog U46619 were normal but were enhanced to low thrombin concentrations. The defect of GPV null platelets made them more sensitive to inhibition by the anti-GPVI monoclonal antibody (mAb) JAQ1, and this was also the case in aspirin- or apyrase-treated platelets. Moreover, an mAb (V.3) against the extracellular domain of human GPV selectively inhibited collagen-induced aggregation in human or rat platelets. V.3 injected in rats as a bolus decreased the ex vivo collagen aggregation response without affecting the platelet count. Finally, surface plasmon resonance studies demonstrated binding of recombinant soluble GPV on a collagen-coupled matrix. In conclusion, GPV binds to collagen and appears to be required for normal platelet responses to this agonist.


1982 ◽  
Vol 92 (2) ◽  
pp. 283-288 ◽  
Author(s):  
F D Howard ◽  
H R Petty ◽  
H M McConnell

Two-dimensional PAGE (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell. 1977. Cell. 12:1133-1142) has been employed to assess the effects of antibody-dependent phagocytosis on the cell surface protein composition of RAW264 macrophages. Unilamellar phospholipid vesicles containing 1% dinitrophenyl-aminocaproyl-phosphatidylethanolamine (DNP-cap-PE) were used as the target particle. Macrophages were exposed to anti-DNP antibody alone, vesicles alone, or vesicles in the presence of antibody for 1 h at 37 degrees C. Cell surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination at 4 degrees C. After detergent solubilization, membrane proteins were analyzed by two-dimensional gel electrophoresis. The resulting pattern of spots was compared to that of standard proteins. We have identified several surface proteins, not apparently associated with the phagocytic process, which are present either in a multichain structure or in several discretely charged forms. After phagocytosis, we have observed the appearance of two proteins of 45 and 50 kdaltons in nonreducing gels. In addition, we have noted the disappearance of a 140-kdalton protein in gels run under reducing conditions. These alterations would not be detected in the conventional one-dimensional gel electrophoresis. This evidence shows that phagocytosis leads to a modification of cell surface protein composition. Our results support the concept of specific enrichment and depletion of membrane components during antibody-dependent phagocytosis.


Zygote ◽  
2003 ◽  
Vol 11 (2) ◽  
pp. 119-129 ◽  
Author(s):  
R.C. Chian ◽  
J.T. Chung ◽  
K. Niwa ◽  
M.A. Sirard ◽  
B.R. Downey ◽  
...  

This study examined the event of protein phosphorylation in bovine oocytes during germinal vesicle breakdown (GVBD) and formation of pronuclei following fertilisation in vitro. Immature oocytes were obtained from abattoir materials and cultured in vitro. The oocytes were labelled with [32P]orthophosphate at 3 h intervals from 0 to 12 h following maturation in culture or from 3 to 18 h following insemination. One-dimensional gel electrophoresis indicated that levels of protein phosphorylation are low prior to GVBD. However, the levels of protein phosphorylation at approximately 40 kDa, 27 kDa, 23 kDa and 18 kDa increased substantially following GVBD and then decreased gradually as maturation in culture progressed. In contrast, the levels of protein phosphorylation increased gradually in the oocytes following pronucleus formation. Further, two-dimensional gel electrophoresis indicated that the protein at approximately 18 kDa reversibly changed in the oocytes during maturation and fertilisation. These results indicate that the reversible changes of this phosphoprotein may be related to either cell cycle transition or pronucleus formation during maturation and fertilisation in bovine oocytes.


Sign in / Sign up

Export Citation Format

Share Document