scholarly journals Immunocytochemical identification and quantitation of the mononuclear cells in the cerebrospinal fluid, meninges, and brain during acute viral meningoencephalitis.

1984 ◽  
Vol 159 (1) ◽  
pp. 77-88 ◽  
Author(s):  
T R Moench ◽  
D E Griffin

The mononuclear cells of the central nervous system (CNS) inflammatory response were characterized in cerebrospinal fluid (CSF), meningeal exudate, and brain parenchyma of mice 3-14 d after infection with Sindbis virus. The inflammatory infiltrate in CSF peaked and resolved before that of the parenchyma or meningeal exudate. Immunoperoxidase staining with monoclonal antibodies identified CSF inflammatory cells to be almost exclusively T cells, while inflammatory cells in the brain parenchymal perivascular cuffs and the meninges were a mixture of T cells, B cells, and macrophages. The percentage of B cells and macrophages increased at the later time points. Approximately 20% of CSF and 50% of the cells present early in the perivascular cuffs were not identified, suggesting that another subset of inflammatory cells may be present. We concluded that significant differences exist in the time course and cellular composition of the inflammatory responses in different compartments of the CNS during an acute viral infection.

2020 ◽  
Author(s):  
Xiaoying Fan ◽  
Xiangyang Chi ◽  
Wenji Ma ◽  
Suijuan Zhong ◽  
Yunzhu Dong ◽  
...  

Coronavirus disease 2019 (COVID-19) has caused over 220,000 deaths so far and is still an ongoing global health problem. However, the immunopathological changes of key types of immune cells during and after virus infection remain unclear. Here, we enriched CD3+ and CD19+ lymphocytes from peripheral blood mononuclear cells of COVID-19 patients (severe patients and recovered patients at early or late stages) and healthy people (SARS-CoV-2 negative) and revealed transcriptional profiles and changes in these lymphocytes by comprehensive single-cell transcriptome and V(D)J recombination analyses. We found that although the T lymphocytes were decreased in the blood of patients with virus infection, the remaining T cells still highly expressed inflammatory genes and persisted for a while after recovery in patients. We also observed the potential transition from effector CD8 T cells to central memory T cells in recovered patients at the late stage. Among B lymphocytes, we analyzed the expansion trajectory of a subtype of plasma cells in severe COVID-19 patients and traced the source as atypical memory B cells (AMBCs). Additional BCR and TCR analyses revealed a high level of clonal expansion in patients with severe COVID-19, especially of B lymphocytes, and the clonally expanded B cells highly expressed genes related to inflammatory responses and lymphocyte activation. V-J gene usage and clonal types of higher frequency in COVID-19 patients were also summarized. Taken together, our results provide crucial insights into the immune response against patients with severe COVID-19 and recovered patients and valuable information for the development of vaccines and therapeutic strategies.


Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2528-2536 ◽  
Author(s):  
J Limpens ◽  
R Stad ◽  
C Vos ◽  
C de Vlaam ◽  
D de Jong ◽  
...  

Successive oncogenic steps are necessary to generate cancer. In many B-cell lymphomas, chromosomal translocations are considered to be an early oncogenic hit. We investigated whether the lymphoma-associated t(14;18) involving the BCL2 oncogene can occur outside the context of malignancy. To this end, we extensively screened blood cells from healthy blood donors by a very sensitive seminested polymerase chain reaction (PCR) for breakpoint junctions at JH1–5 on 14q32 and the major breakpoint region of BCL2 on 18q21. In each individual, mononuclear cells, granulocytes, flow-sorted B cells, and T cells were separately tested in five to seven independently performed PCRs (in total, 0.5 x 10(6) to 1.0 x 10(6) cells per fraction per individual). Amplification products that hybridized with an internal BCL2 probe and a JH probe were sequenced. Six of nine individuals harbored t(14;18) breakpoints. Translocations were restricted to B cells, with an estimated frequency of 1 in 10(5) or less circulating B cells. In total, 23 of 51 experiments on B cells were positive in contrast to 1 of 48 on T cells and 2 of 47 experiments on granulocytes. Consistent with the presence of 4.7% to 13.0% B cells in the mononuclear cell fractions, only very few (4 of 47) tests were positive in these fractions. Sequence analysis showed that four of six individuals harbored two to five unrelated t(14;18)-carrying B-cell clones. All breakpoints had a structure similar to that in follicular lymphoma. We propose that B cells with the t(14;18) translocation are regularly generated in normal individuals, but that only very few cells with the translocation will acquire the additional oncogenic hits necessary to establish the malignant phenotype.


2008 ◽  
Vol 32 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Michele Bolan ◽  
Daniele de Almeida Lima ◽  
Cláudia Pinto Figueiredo ◽  
Gabriella Di Giunta ◽  
Maria José de Carvalho Rocha

BACKGROUND: The periapical lesion is the result of a local inflammatory reaction caused by bacteria and its products present on the root canal. The interaction between inflammatory cells and bacteria elicit both specific and non-specific immune responses. OBJETIVE: Due to the lack of studies evaluating the role of the immune system in periapical lesions of primary teeth and considering the potentially systemic effects that these infections can cause in children, especially because of the immaturity of their immune system, we sought to evaluate the presence of T cells, B cells and macrophages on periradicular lesions in primary teeth. STUDY DESIGN: 14 periradicular lesions were analyzed. The immunohistochemistry technique was performed using CD45RO, CD20, CD68 monoclonal antibodies aiming to identify T cells, B cells and macrophages, respectively. Cells were quantified by microscopic analysis of histological sections. RESULTS: Mean percentage of positive cells CD45RO was 11.76; CD20 was 5.25; CD68 was 10.92. Our results showed that T and B cells and macrophages comprise the majority of the inflammatory infiltrate. CONCLUSION: We concluded that both humoral and cell mediated immune reactions take place in periradicular lesions of primary teeth. The immune system plays an important role on the periradicular inflammatory processes in primary teeth.


PEDIATRICS ◽  
1980 ◽  
Vol 65 (3) ◽  
pp. 497-500
Author(s):  
Yukiaki Miyagawa ◽  
Kenichi Sugita ◽  
Atsushi Komiyama ◽  
Taro Akabane

Pokeweed mitogen-induced immunoglobulin (Ig) production by cord lymphocytes was studied in vitro by Ig-secreting plaque-forming cell (Ig-PFC) assay. Although adult mononuclear cells generated all of IgM-, IgG-, and IgA-PFC, cord mononuclear cells generated only IgM-PFC when cultured for seven days. The number of cord IgM-PFC was 102 ± 26/104 mononuclear cells, being about one fourth of that of adult IgM-PFC. When cultured for 14 days, cord mononuclear cells formed increased numbers of IgM-PFC in contrast to adult cells, and yielded IgG-PFC as well, indicating delayed Ig production. Cord T cells were much less effective at helping adult B cells to differentiate into Ig-PFC as compared with adult T cells. Substitution of adult T cells for cord T cell markedly improved the response of cord B cells. The present study demonstrates Ig secretion by cord lymphocytes in response to pokeweed mitogen stimulation. The results further indicate that the delayed Ig production by cord lymphocytes is largely due to functional immaturity of the T cells.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1348-1354 ◽  
Author(s):  
HG Klingemann ◽  
S Dedhar

Abstract The receptors for fibronectin (FN-R) and vitronectin (VN-R) belong to a family of integral membrane glycoproteins known to be involved in cell- extracellular matrix and cell-cell interactions named integrins (FN-R = beta 1 integrin and VN-R = beta 3 integrin). Adhesion studies using FN- coated plastic dishes and highly purified subpopulations of peripheral blood mononuclear cells (PBMCs) showed a strong binding of monocytes and T lymphocytes to FN but virtually no binding of B cells to FN. Binding of monocytes and T cells to FN could be partially inhibited by a hexapeptide (GRGDSP) containing the adhesive peptide sequence Arg-Gly- Asp (RGD) as well as by an anti-FN-R antibody. The distribution of beta 1 and beta 3 integrin complexes on PBMCs was characterized by immunoprecipitation of detergent extracts of 125I-labeled cells using polyclonal antibodies against these two receptors. Two surface polypeptides corresponding to the alpha and beta chains of FN-R and VN- R were found on all three cell types. To characterize these receptors further, monoclonal antibodies (MoAbs) against the very late antigens (VLAs) 1, 3, and 5 were used for immunoprecipitation studies. Monocytes and T cells reacted with VLA 5 that was previously identified as the human FN receptor, whereas no labeling with anti-VLA 5 could be shown for B cells. When cell populations were cultured in 10% human serum for 24 hours, an increase in beta 1-integrin+ monocytes and T cells was observed. The number of beta 3-integrin+ cells remained essentially unchanged. The presence of beta 1 and beta 3 integrins on monocytes as well as on T and B lymphocytes may be of significance in the ability of these cells to interact with each other and participate in hematopoiesis and certain immune reactions.


2006 ◽  
Vol 180 (1-2) ◽  
pp. 63-70 ◽  
Author(s):  
Anne H. Cross ◽  
Jennifer L. Stark ◽  
Joanne Lauber ◽  
Michael J. Ramsbottom ◽  
Jeri-Anne Lyons

Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4946-4953 ◽  
Author(s):  
Ben J. Gu ◽  
James S. Wiley

Abstract Matrix metalloproteinase-9 (MMP-9) activity is required for inflammatory response, leukocyte recruitment, and tumor invasion. There is increasing evidence suggesting that the P2X7 receptor of mononuclear cells, which is activated by extracellular adenosine triphosphate (ATP), is involved in inflammatory responses. In this study, ATP caused a rapid release of MMP-9 and a moderate decrease in tissue inhibitor of metalloproteinase 1 (TIMP-1) release from human peripheral-blood mononuclear cells (PBMCs) over a 30-minute time course. The release was time- and dose-dependent and dissociated from ATP-induced cell death. BzATP, which is the most potent agonist for the P2X7 receptor, also caused a similar effect at a lower dosage. ATP-induced MMP-9 release was inhibited by the P2X7 receptor antagonists periodate oxidized ATP and KN-62, or by calcium chelators, as well as by a loss-of-function polymorphism in the P2X7 receptor, but not by brefeldin A, monensin, or cycloheximide, or by anti–tumor necrosis factor-α (TNF-α) or anti–interleukin-1β (IL-1β) monoclonal antibodies. Results from purified subsets of PBMCs showed monocytes were the major source for MMP-9 and TIMP-1 release, and ATP remained effective in purified monocyte and T-cell populations. These observations suggest a novel role for P2X7 as a pro-inflammatory receptor involved in rapid MMP-9 release and leukocyte recruitment.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 211 ◽  
Author(s):  
Nour Z. Atwany ◽  
Seyedeh-Khadijeh Hashemi ◽  
Manju Nidagodu Jayakumar ◽  
Mitzi Nagarkatti ◽  
Prakash Nagarkatti ◽  
...  

Regulatory T cells (Tregs) are key players in the regulation of inflammatory responses. In this study, two natural molecules, namely, sparteine sulfate (SS) and harpagoside (Harp), were investigated for their ability to induce Tregs in human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy volunteers and grown in the presence or absence of ConA, with TGF-beta, SS or Harp. Expression of the mRNA of FoxP3, TGF-beta, IL-10 and GAPDH was assessed via q-PCR. The expression of Treg markers including CD4, CD25, CD127 and FoxP3 was measured via flow cytometry. The secretion of IL-10 and TGF-beta by cultured cells was assessed by ELISA. Furthermore, the suppressive role of SS and Harp on PBMCs in vitro was tested via allogeneic mixed lymphocyte reaction (MLR). Data obtained show that both compounds increased the expression of FoxP3, TGF-beta and IL-10 mRNA in resting PBMCs but to a lesser extent in activated cells. Moreover, they significantly increased the percent of CD4+CD25+FoxP3+CD127− Tregs in activated and naïve PBMCs. Functionally, both compounds caused a significant reduction in the stimulation index in allogeneic MLR. Together, our data demonstrate for the first time that SS and Harp can induce human Tregs in vitro and therefore have great potential as anti-inflammatory agents.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 785
Author(s):  
Mariene Ribeiro Amorim ◽  
Marjorie Cornejo Pontelli ◽  
Gabriela Fabiano de Souza ◽  
Stéfanie Primon Muraro ◽  
Daniel A. Toledo-Teixeira ◽  
...  

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Sign in / Sign up

Export Citation Format

Share Document