scholarly journals Role of CD4 in thymocyte selection and maturation.

1989 ◽  
Vol 169 (6) ◽  
pp. 2085-2096 ◽  
Author(s):  
J C Zuñiga-Pflücker ◽  
S A McCarthy ◽  
M Weston ◽  
D L Longo ◽  
A Singer ◽  
...  

We examined the possible role of CD4 molecules during in vivo and in vitro fetal thymic development. Our results show that fetal thymi treated with intact anti-CD4 mAbs fail to generate CD4 single-positive T cells, while the generation of the other phenotypes remains unchanged. Most importantly, the use of F(ab')2 and Fab anti-CD4 mAb gave identical results, i.e., failure to generate CD4+/CD8- T cells, with no effect on the generation of CD4+/CD8+ T cells. Since F(ab')2 and Fab anti-CD4 fail to deplete CD4+/CD8- in adult mice, these results strongly argue that the absence of CD4+/CD8- T cells is not due to depletion, but rather, is caused by a lack of positive selection, attributable to an obstructed CD4-MHC class II interaction. Furthermore, we also observed an increase in TCR/CD3 expression after anti-CD4 (divalent or monovalent) mAb treatment. The TCR/CD3 upregulation occurs in the double-positive population, and may result from CD4 signaling after mAb engagement, or may be a consequence of the blocked CD4-class II interactions. One proposed model argues that the CD3 upregulation occurs in an effort to compensate for the reduction in avidity or signaling that is normally provided by the interaction of the CD4 accessory molecule and its ligand. As a whole, our findings advocate that CD4 molecules play a decisive role in the differentiation of thymocytes.

Open Biology ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190235 ◽  
Author(s):  
Stephanie J. Crowley ◽  
Patrick T. Bruck ◽  
Md Aladdin Bhuiyan ◽  
Amelia Mitchell-Gears ◽  
Michael J. Walsh ◽  
...  

Cancer-specific mutations can lead to peptides of unique sequence presented on MHC class I to CD8 T cells. These neoantigens can be potent tumour-rejection antigens, appear to be the driving force behind responsiveness to anti-CTLA-4 and anti-PD1/L1-based therapies and have been used to develop personalized vaccines. The platform for delivering neoantigen-based vaccines has varied, and further optimization of both platform and adjuvant will be necessary to achieve scalable vaccine products that are therapeutically effective at a reasonable cost. Here, we developed a platform for testing potential CD8 T cell tumour vaccine candidates. We used a high-affinity alpaca-derived VHH against MHC class II to deliver peptides to professional antigen-presenting cells. We show in vitro and in vivo that peptides derived from the model antigen ovalbumin are better able to activate naive ovalbumin-specific CD8 T cells when conjugated to an MHC class II-specific VHH when compared with an irrelevant control VHH. We then used the VHH-peptide platform to evaluate a panel of candidate neoantigens in vivo in a mouse model of pancreatic cancer. None of the candidate neoantigens tested led to protection from tumour challenge; however, we were able to show vaccine-induced CD8 T cell responses to a melanoma self-antigen that was augmented by combination therapy with the synthetic cytokine mimetic Neo2/15.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4026-4026
Author(s):  
Caisheng Lu ◽  
Huihui Ma ◽  
Ailing Liu ◽  
MeiHua Jin ◽  
Shirong Li ◽  
...  

Abstract Abstract 4026 Interferon-g/STAT1 signaling plays a critical role in regulating dendritic cell activation and function. Blockade of IFN-g signaling leads to reduced DC activation and impaired anti-tumor and acquired adaptive immunity. We recently reported that lack of IFN-g/STAT1 in donor lymphocytes leads to reduced GVHD induction in both MHC- and mHA-mismatched mouse BMT models. In this study, we addressed the role of host STAT1 in the regulation of GVHD. Wildtype or STAT1-deficient 129 mice (H2b) underwent allogeneic Bone Marrow Transplantation (BMT) following lethal irradiation (1044 rad). GVHD was induced using either BALB/c or B6 donor spleen cells. We unexpectedly observed that absence of STAT1 in recipient mice led to increased GVHD-associated mortality in both MHC-mismatched (MST 5 vs. 8, p=0.01) and mHA-mismatched (MST 11 vs. 23, p<0.01) BMT settings. The enhanced GVHD induction was found to be associated with increased activation (expression of CD69 and CD25) and allo-antigen driven proliferation of donor CD4 and CD8 T cells as determined by CFSE-dilution. As host APCs have been reported to being crucial for induction of GVHD, we phenotypically and functionally characterized STAT1 deficient DCs. Our studies revealed that STAT1-deficient bone marrow-derived dendritic cells (BMDCs) which were maturated in the presence of LPS showed significantly increased MHC class II, CD86, CD80 and CD40 expression compared with wildtype BMDCs. Furthermore, STAT1-deficient BMDC showed significantly increased direct allo-stimulatory capacity resulting in increased responder cell proliferation as determined by standard MLR assays using 3H-Thymidine uptake assays as well as CFSE-dilution studies. STAT1−/− BMDCs significantly promoted CD44+CD62L- expression in responder CD4 and CD8 T cells compared to wild type BMDCs (all p<0.001). The increased MHC II expression in STAT1-deficient DC was further confirmed in host CD11b+ and CD11c+ cells following GVHD induction in vivo. To determine whether non-hematopoietic cells in STAT1−/− host contribute to the increased GVHD induction, we created radiation chimeras in which STAT1 was only deficient in the hematopoietic compartment by transplanting 129.STAT1−/− BMC into 129.STAT1+/+ recipients following lethal irradiation. 120 days later GVHD was induced using fully MHC-mismatched BALB/c donor splenocytes. Similar to STAT1-deficient recipients STAT1−/− ®WT chimeras showed enhanced GVHD induction compared to STAT1+/+®WT chimeras (MST 11 vs. 5, p<0.05). To determine the mechanism underlying the enhanced expansion of donor T cells in response to stimulation with STAT1-deficient APC, we hypothesized that STAT-deficiency may impair expression of the T cell inhibitory molecules Programed Cell Death-Ligand1 or-2 (PD-L1,-L2) on APC. We therefore studied the expression of PD-L1 and PD-L2 expression on wildtype and STAT1-deficient DC. Indeed, were able to demonstrate that absence of STAT1 significantly suppressed PD-L1 expression on BMDCs upon in vitro LPS stimulation (Mean Fluorescence Intensity 167.2± 15.9 vs. 532.5±7.6, p<0.001) and also in vivo tested on day+ 6 post-BMT in the mHA-mismatched setting. In line with these results using in vitro stimulation we could demonstrate significantly reduced Activation Induced Cell Death (AICD) in activated B6.SJL CD69+ CD4 and CD8 cells stimulated with 129.STAT1−/− BMDCs compared to cells stimulated with 129.STAT1+/+ BMDCs (10.6±1.5% vs. 28.2±1.9 % for CD4; 13.0±0.7% vs. 30.5±1.1% for CD8 respectively, p<0.001 for all). Importantly, blocking IFN-g with neutralizing antibodies significantly increased MHC class II, CD86 expression and reduced reduced PD-L1 expression on BMDCs upon LPS stimulation. In summary, our data suggest two mechanisms how the absence of STAT1 signaling in host hematopoietic cells may promote the development of GVHD: First, increased expression of MHC II and co-stimulatory molecule in STAT1-deficient APC may lead to enhanced activation and proliferation of donor lymphocytes. Second, absence of STAT1 in maturated host DC inhibits PD-L1 expression thus leading to reduced AICD of activated donor lymphocytes. These findings suggest that STAT1-signaling modulates host APC function and shapes the GVH-response by causing increased allo-antigen-specific donor T cell activation, survival and proliferation. Disclosures: Lentzsch: Centocor Ortho Biotech: Research Funding; Genzyme: Consultancy; Onyx: Consultancy; Celgene: Consultancy, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2529-2529
Author(s):  
William K. Decker ◽  
Dongxia Xing ◽  
Sufang Li ◽  
Simon N. Robinson ◽  
Hong Yang ◽  
...  

Abstract Despite improvements in therapy for acute myelogenous leukemia (AML), a significant percentage of patients still relapse and succumb to their disease. Dendritic cell immunotherapy offers the promise of potentially effective supportive therapy for a variety of neoplastic conditions; and the use of DCs loaded with tumor antigens is now recognized as an important investigational therapy. Though a variety of methods have been used to load DC vaccines, the loading of the MHC class II compartment with tumor lysate has predominated. The priming of a class II-mediated (CD4) T-cell response may be crucial to the success of DC immunotherapy as such a response is likely required for the development of memory CD8+ T-cells. DC cross-presentation is credited with the ability of lysate-loaded DCs to prime both CD4 and CD8 T-cell responses, enabling the generation of CD8+ CTLs without the loading of the MHC class I compartment (i.e. the cytoplasm). Recently, however, several reports have raised doubts as to the efficiency of cross-presentation as a mechanism for CTL priming in vivo. To examine this issue, we have loaded human DCs with both AML tumor lysate and mRNA. This technique allows the full repertoire of class I antigens to be presented without dependence upon cross-presentation; and, moreover, provides a full complement of class II antigens necessary for CD4 T-cell priming and the generation of memory responses. Methods: CD14+ precursors were isolated from normal donor PBPCs by magnetic separation. Immature DCs were then generated by culturing precursors for six days in GM-CSF and IL-4. Lysate was produced by three successive freeze/thaw cycles of blasts. mRNA was extracted from blasts using Trizol and oligo-dT separation. Immature DCs were pulsed for three hours with AML lysate and subsequently electroporated with AML mRNA. Loaded DCs were matured for 48 hours with IL-1β, TNF-α, IL-6, and PGE2 and then used to prime autologous T-cells. Short-term responses were assayed on day 5 of the 1st stimulation. Memory responses were assayed on day 10 of a tertiary stimulation. Results: Doubly-loaded DCs can prime a superior T-cell response in vitro in comparison to that of singly-loaded DCs, demonstrating a 30–70% increase in IFN-γ ELISpots over lysate-loaded DCs (p&lt;0.001) and a 3–4 fold increase in ELISpots in comparison to mRNA loaded DCs (p&lt;0.001). These results were verified by flow cytometry which showed 35% of CD8+ T-cells primed by doubly-loaded DCs were CD69+/IFN-γ+ vs. 14% of CD8+ T-cells primed by lysate-loaded DCs (p&lt;0.001). This enhancement may be based upon both an upregulation of CD83 surface expression (p&lt;0.0019) of doubly-loaded DCs and/or the upregulation of B7.1/B7.2 that accompanies elevated CD40L signaling. Memory responses were also greatly improved, with a 126% increase in total ELISpots (double loaded DCs versus lysate loaded DCs; p&lt;0.03) and a 187% increase in total IFN-γ secretion (p&lt;0.03). Unloaded (p&lt;0.01) and mRNA (p&lt;0.007) loaded DCs exhibited a virtual inability to generate memory T-cells in vitro, suggesting that the perpetuation of the memory response is reliant upon T-cell help. Conclusion: DCs doubly-loaded with lysate and mRNA are more efficient in the generation of primary and secondary immune responses than are singly-loaded DCs. The clinical administration of such doubly-loaded DCs may offer an important therapeutic option to patients with AML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1307-1307
Author(s):  
Robert B. Levy ◽  
Angela Jones

Abstract CD4 regulatory T (Treg) cells have shown promise in the transplantation mileu including the ability to inhibit the development of graft vs host disease (GVHD) following allogeneic hematopoietic stem cell transplants (HCT). The antigen specificity of the Treg population(s) involved is not yet clear nor is the role of their activation following transplant. We are interested in determining the requirement for recognition of host MHC antigens following infusion of CD4+CD25+ T cells in an experimental model of GVHD. To clearly distinguish the requirements of regulatory vs GVH reactive cells, a model of CD8 T cell mediated GVHD was developed using highly purified BALB/c (H2d) donor CD8+ T cells (Miltenyi column, 95-98%). CD8 T cells were transplanted together with T cell depleted (TCD) BALB/c BMC into 12.0 GY (6.0 Gy split dose) TBI conditioned C57BL/6 (B6, H2b) recipients. To support development of GVHD by these cells, resistance was inhibited by treatment of recipients with anti-NK1.1mab (PK136) at Days -1, 0 and +7. BALB/c CD8+ T cells at doses of 5.0x106 but not 2.5x106 induced weight loss and some lethality in B6 recipients. 5x106 CD8+ T cells were then transplanted into B6-MHC class II−/ − recipients. GVHD symptoms including weight loss and lethality were readily apparent in these mice post-transplant. Interestingly, GVHD was consistently more severe with respect to the induction of weight loss and lethality in MHC Class II−/ − vs B6-wt recipients. Highly enriched BALB/c CD4+CD25+ T cells (&gt; 95%) were produced from spleen and lymph node cells following negative (B-cells, CD8 and NK) and positive (CD25) selection using Miltenyi magnetic bead columns. Co-transplant of 1x106 CD4+CD25+ T cells together with BALB/c CD8+ T cells into B6 recipients inhibited GVHD as assessed by the absence of weight loss and lethality compared to B6 recipients of CD8+ T cells alone. In contrast, BALB/c CD4+CD25+ T cells failed to protect B6-MHC class II−/ − recipients from severe CD8+ T cell mediated GVHD. These findings demonstrate that donor CD4+ T regulatory cells can suppress GVHD inducing CD8+ T cells after the former recognize host class II alloantigen following transplant. We hypothesize that activated CD4+CD25+ T regulatory cells inhibit GVH reactive T cells at the host APC interface. Future studies in this model can be designed to examine ex-vivo activated and expanded CD4+CD25+ T regulatory populations. Transplant of such cells will enable us to address questions regarding the importance of in vivo recognition of host class II in the regulation of GVHD by these cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 456-456 ◽  
Author(s):  
Pavan Reddy ◽  
Yoshinobu Maeda ◽  
Raimon Duran-Struuck ◽  
Oleg Krijanovski ◽  
Charles Dinarello ◽  
...  

Abstract We and others have recently demonstrated that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor with anti-neoplastic properties, reduces experimental acute graft-versus-host disease (GVHD). We have now investigated the mechanisms of action of two HDAC inhibitors, SAHA and ITF 2357, on allogeneic immune responses. Bone marrow derived dendritic cells (DCs) were preincubated with the HDAC inhibitors at nanomolar concentrations for 16–18 hours and stimulated with lipopolysaccharide (LPS). Pretreatment of DCs caused a significant reduction in the secretion of TNF-α, IL-12p70 and IL-6 compared to the untreated controls (P< 0.005). Similar effects were seen using human peripheral blood mononuclear cell derived DCs. Pre-treatment of both murine and human DCs also significantly reduced their in vitro stimulation of allogeneic T cells as measured by proliferation and IFN-γ production (P<0.01). We determined the in vivo relevance of these observations utilizing a mouse model where the responses of allogeneic donor bm12 T cells depended on the function of injected host B6 DCs would stimulate. Recipient Class-II −/− B6 (H-2b) received 11 Gy on day -1 and were injected with 4–5 x 106 wild type B6 DCs treated with SAHA or with media on days -1 and 0 and then transplanted with 2 x 106 T cells and 5 x 106 TCDBM cells from either syngeneic B6 or allogeneic bm12 donors. SAHA treatment of DCs significantly reduced expansion of allogeneic donor CD4+ T cells on day +7 after BMT compared to controls (P<0.05). SAHA treatment induced a similarly significant reduction in the expansion of CD8+ cells in Class I disparate [bm1→β2M−/−] model. In vitro, SAHA treatment significantly suppressed the expression of CD40 and CD80 but did not alter MHC class II expression. Surprisingly, when mixed with normal DCs at 1:1 ratio, SAHA treated DCs dominantly suppressed allogeneic T cell responses. The regulation of T cell proliferation was not reversible by addition of IL-12, TNF-α, IL-18, anti-IL-10 or anti-TGFβ, either alone or in combination. Suppression of allogeneic responses was contact dependent in trans-well experiments. To address whether the regulation of SAHA treated DCs required contact with T cells, we devised a three cell experiment where SAHA treated DCs lacked the capacity to present antigens to T cells. DCs from B6 MHC Class II deficient (H-2b) were treated with SAHA and co-cultured with wild type B6 (H-2b) DCs along with purified allogeneic BALB/c (H-2d) CD4+ T cells in an MLR. Allogeneic CD4+ T cells proliferated well, demonstrating the regulation to be dependent on contact between SAHA treated DCs and T cells. To address the in vivo relevance of this suppression, we utilized a well characterized [BALB/c →B6] mouse model of acute GVHD. Recipient B6 animals received 11Gy on day -1 and were injected with of 5 million host type SAHA treated or control DCs on days −1, 0, and +2. Mice were transplanted on day 0 with 2 x 106 T cells and 5 x 106 BM from either syngeneic B6 or allogeneic BALB/c donors. Injection of SAHA treated DCs resulted in significantly better survival (60% vs. 10%, P < 0.01) and significantly reduced serum levels of TNF-α, donor T cell expansion and histopathology of GVHD on day +7 after BMT compared to the controls. We conclue that HDAC inhibitors are novel immunomodulators that regulate DC function and might represent a novel strategy to prevent GVHD.


1999 ◽  
Vol 67 (6) ◽  
pp. 3040-3046 ◽  
Author(s):  
Nathalie E. M. van Doorn ◽  
Ferry Namavar ◽  
Marion Sparrius ◽  
Jeroen Stoof ◽  
Emmelien P. van Rees ◽  
...  

ABSTRACT The vacA and cagA geno- and phenotypes of two mouse-adapted strains of Helicobacter pylori, SS1 and SPM326, were determined. The SS1 strain, which had thecagA + and vacA s2-m2 genotype, induced neither vacuole formation in HeLa cells nor interleukin-8 (IL-8) production in KATO III cells. In contrast, H. pyloriSPM326, with the cagA + and vacAs1b-m1 genotype, induced vacuoles as well as IL-8 production in vitro. Furthermore, a spontaneous mutant of SPM326, which produced a vacuolating cytotoxin but was not able to induce IL-8 production (SPM326/IL-8−), was detected. C57Bl/6 and BALB/c mice were infected with these three strains to investigate the colonization pattern and the effect on the immune response in vivo. The SS1 strain colonized the stomachs of all mice in large numbers which remained constant over time. Colonization with the SPM326/IL-8+ and SPM326/IL-8− strains was lesser, or even absent, and decreased over time. At 5 weeks postinoculation all three H. pylori strains induced a mild increase of neutrophil count in the gastric corpus of C57Bl/6 mice, which disappeared by 12 weeks. At both 5 and 12 weeks postinoculation C57Bl/6 mice colonized with SPM326/IL-8+ showed an increased expression of major histocompatibility complex (MHC) class II antigen in the cardia which was accompanied by an increased number of T cells. C57Bl/6 mice that were infected with SS1 and SPM326/IL-8− did not show chronic inflammation. BALB/c mice colonized with SS1 and SPM326/IL-8− also showed an increase in neutrophil count at 5 weeks, which normalized again by 12 weeks postinoculation. At this time point SS1-infected mice showed inflammation in the corpus and antrum. At these sites an increased expression of MHC class II antigens and an increased number of T cells were observed. Although small lymphoid follicles were already observed 5 weeks after inoculation with SS1, their incidence as well as their number was increased at 12 weeks. These results show that inflammation induced by H. pyloridepends both on the bacterial strain and the host.


The ectodomains of the T cell surface glycoproteins CD4 and CD8 bind to membrane-proximal domains of MHC class II and class I molecules, respectively, while both cytoplasmic domains interact with the protein tyrosine kinase (PTK) p56 lck (lck) through a shared cysteine-containing motif. Function of CD4 and CD8 requires their binding to the same MHC molecule as that recognized by the T cell antigen receptor (TCR). In vitro studies indicate that CD4-associated lck functions even in the absence of kinase activity. In vivo experiments show that, whereas helper T cell development is impaired in CD4-deficient mice, high level expression of a transgenic CD4 that cannot bind lck rescues development of this T cell subset. These studies suggest that CD4 is an adhesion molecule whose localization is regulated through protein-protein interactions of the associated PTK and whose function is to increase the stability of the TCR signalling complex by binding to the relevant MHC. The function of CD4 in development has been further studied in the context of how double positive (CD4+ CD8+ ) thymocytes mature into either CD4 + T cells with helper function and TCR specificity for class II or into CD8 + T cells with cytotoxic function and specificity for class I. Studies using CD4- transgenic mice indicate that development of single positive T cells involves stochastic downregulation of either CD4 or CD8, coupled to activation of a cytotoxic or helper program, respectively, and subsequent selection based on the ability of the TCR and remaining coreceptor to engage the same MHC molecule.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jialin Zhu ◽  
Yan Wang ◽  
Dai Li ◽  
Haonan Zhang ◽  
Zhi Guo ◽  
...  

Abstract Background Interleukin-35 (IL-35) has been reported to play an important role in the progression of cancers. The role of IL-35 in prostate cancer (PCA) is not well understood. In this study, we investigated the effects of IL-35 on PCA and its immunoregulatory effect on PCA. Methods The protein and mRNA expression of IL-35 in PCA cells was detected by western blot and RT-PCR. The invasion and migration of cells were detected using transwell and wound‐healing assays. A CCK-8 assay was conducted to observe cell proliferation. In vivo, IL-35 plasma concentration was test by enzyme-linked immunosorbent assay. The role of IL-35 in tumour cell proliferation and angiogenesis of mice was detected by immunohistochemical stains. The mouse survival and tumour volumes were calculated, and lung metastasis rate was detected by HE staining. The modulatory effects of IL-35 on myeloid-derived inhibitory cells (MDSCs), regulatory T cells (Tregs), CD4+ T cells and CD8+ T cells from PCA mice were investigated by immunohistochemical stains and flow cytometry. Results High levels of IL-35 significantly promoted the migration, invasion and cell proliferation of PCA cells in vitro. IL-35 was associated with tumour growth, metastasis and poor prognosis in PCA mice. Additionally, high levels of IL-35 significantly increased the proportions of MDSCs and Tregs and decreased the proportions of CD4+ and CD8+ T cells in the spleen, blood and tumour microenvironment. The IL-35 neutralizing antibody played the opposite role. Conclusions IL-35 contributed to the progression of PCA through promoting cell proliferation and tumour angiogenesis. IL-35 might limit the anti-tumour immune response by upregulating the proportions of Tregs and MDSCs and by reducing the proportions of CD4+ and CD8+ T cells. IL-35 might serve as a novel therapeutic target for PCA.


Sign in / Sign up

Export Citation Format

Share Document