scholarly journals Tumor Rejection Induced by CD70-mediated Quantitative and Qualitative Effects on Effector CD8+ T Cell Formation

2004 ◽  
Vol 199 (11) ◽  
pp. 1595-1605 ◽  
Author(s):  
Ramon Arens ◽  
Koen Schepers ◽  
Martijn A. Nolte ◽  
Michiel F. van Oosterwijk ◽  
René A.W. van Lier ◽  
...  

In vivo priming of antigen-specific CD8+ T cells results in their expansion and differentiation into effector T cells followed by contraction into a memory T cell population that can be maintained for life. Recent evidence suggests that after initial antigenic stimulation, the magnitude and kinetics of the CD8+ T cell response are programmed. However, it is unclear to what extent CD8+ T cell instruction in vivo is modulated by costimulatory signals. Here, we demonstrate that constitutive ligation of the tumor necrosis factor receptor family member CD27 by its ligand CD70 quantitatively augments CD8+ T cell responses to influenza virus infection and EL-4 tumor challenge in vivo by incrementing initial expansion and maintaining higher numbers of antigen-specific T cells in the memory phase. Concomitantly, the quality of antigen-specific T cells improved as evidenced by increased interferon (IFN)-γ production and a greater cytotoxic potential on a per cell basis. As an apparent consequence, the superior effector T cell formation induced by CD70 protected against a lethal dose of poorly immunogenic EL4 tumor cells in a CD8+ T cell– and IFN-γ–dependent manner. Thus, CD70 costimulation enhances both the expansion and per cell activity of antigen-specific CD8+ T cells.

2013 ◽  
Vol 210 (3) ◽  
pp. 491-502 ◽  
Author(s):  
Shlomo Z. Ben-Sasson ◽  
Alison Hogg ◽  
Jane Hu-Li ◽  
Paul Wingfield ◽  
Xi Chen ◽  
...  

Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4096-4096
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Stephan Mielke ◽  
Behnam Jafarpour ◽  
Bipin N. Savani ◽  
...  

Abstract Abstract 4096 Poster Board III-1031 We previously demonstrated the immunogenicity of a combined vaccine approach employing two leukemia-associated antigenic peptides, PR1 and WT1 (Rezvani Blood 2008). Eight patients with myeloid malignancies received one subcutaneous 0.3 mg and 0.5 mg dose each of PR1 and WT1 vaccines in Montanide adjuvant, with 100 μg of granulocyte-macrophage colony-stimulating factor (GM-CSF). CD8+ T-cell responses against PR1 or WT1 were detected in all patients as early as 1 week post-vaccination. However, responses were only sustained for 3-4 weeks. The emergence of PR1 or WT1-specific CD8+ T-cells was associated with a significant but transient reduction in minimal residual disease (MRD) as assessed by WT1 expression, suggesting a vaccine-induced anti-leukemia response. Conversely, loss of response was associated with reappearance of WT1 transcripts. We hypothesized that maintenance of sustained or at least repetitive responses may require frequent boost injections. We therefore initiated a phase 2 study of repeated vaccination with PR1 and WT1 peptides in patients with myeloid malignancies. Five patients with acute myeloid leukemia (AML) and 2 patients with myelodysplastic syndrome (MDS) were recruited to receive 6 injections at 2 week intervals of PR1 and WT1 in Montanide adjuvant, with GM-CSF as previously described. Six of 7 patients completed 6 courses of vaccination and follow-up as per protocol, to monitor toxicity and immunological responses. Responses to PR1 or WT1 vaccine were detected in all patients after only 1 dose of vaccine. However, additional boosting did not further increase the frequency of PR1 or WT1-specific CD8+ T-cell response. In 4/6 patients the vaccine-induced T-cell response was lost after the fourth dose and in all patients after the sixth dose of vaccine. To determine the functional avidity of the vaccine-induced CD8+ T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of PR1 and WT1 peptides (0.1 and 10 μM) was measured by IC-IFN-γ staining. Vaccination led to preferential expansion of low avidity PR1 and WT1 specific CD8+ T-cell responses. Three patients (patients 4, 6 and 7) returned 3 months following the 6th dose of PR1 and WT1 peptide injections to receive a booster vaccine. Prior to vaccination we could not detect the presence of PR1 and WT1 specific CD8+ T-cells by direct ex-vivo tetramer and IC-IFN-γ assay or with 1-week cultured IFN-γ ELISPOT assay, suggesting that vaccination with PR1 and WT1 peptides in Montanide adjuvant does not induce memory CD8+ T-cell responses. This observation is in keeping with recent work in a murine model where the injection of minimal MHC class I binding peptides derived from self-antigens mixed with IFA adjuvant resulted in a transient effector CD8+ T cell response with subsequent deletion of these T cells and failure to induce CD8+ T cell memory (Bijker J Immunol 2007). This observation can be partly explained by the slow release of vaccine peptides from the IFA depot without systemic danger signals, leading to presentation of antigen in non-inflammatory lymph nodes by non-professional antigen presenting cells (APCs). An alternative explanation for the transient vaccine-induced immune response may be the lack of CD4+ T cell help. In summary these data support the immunogenicity of PR1 and WT1 peptide vaccines. However new approaches will be needed to induce long-term memory responses against leukemia antigens. To avoid tolerance induction we plan to eliminate Montanide adjuvant and use GM-CSF alone. Supported by observations that the in vivo survival of CD8+ T-effector cells against viral antigens are improved by CD4+ helper cells, we are currently attempting to induce long-lasting CD8+ T-cell responses to antigen by inducing CD8+ and CD4+ T-cell responses against class I and II epitopes of WT1 and PR1. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2046-2046
Author(s):  
David M Markusic ◽  
Ashley T Martino ◽  
Federico Mingozzi ◽  
Katherine A. High ◽  
Roland W Herzog

Abstract Abstract 2046 Long-term partial correction of severe hemophilia B following peripheral vein delivery of an AAV8-factor IX vector in human subjects has recently been reported. However, the two patients in the high-dose cohort experienced a rise in liver transaminases and drop in circulating F.IX levels that was halted with steroid treatment. In both the AAV8 and in an earlier AAV2-based trial, a dose of 2×1012 vg/kg seemed above a threshold for the activation of capsid specific memory CD8+ cytotoxic T lymphocytes (CTL). Therefore, reaching a target of > 5% sustained F.IX level (for a change to mild disease) is currently limited by activation of T cell immunity against capsid. New clinical trials are in the pipeline with AAV8 vectors expressing hyperactive F.IX variants that provide therapeutic F.IX expression at lower vector doses, with a goal of avoiding activation of CD8+ T cell memory response. Lack of a preclinical model to study CTL-mediated loss of AAV gene therapy has hampered efforts at clinical development. Neither mice nor non-human primates have recapitulated the human experience, making it difficult to evaluate, prior to clinical trial design, the effect of the serotype, vector dose, and other parameters of the protocol on targeting by capsid-specific T cells. To solve this problem, we have recently developed a murine model, in which male BALB/c RAG −/− mice receive hepatic AAV gene transfer followed by intravenous administration of in vitro expanded strain-matched capsid-specific CD8+ T cells (specific to an MHC I capsid epitope conserved between AAV2 and AAV8 serotypes shared between BALB/c mice and humans expressing the B*0702 molecule). In this model, AAV2-F.IX transduced mice showed a rise in liver enzymes, loss of circulating F.IX, and loss of F.IX expressing hepatocytes, following adoptive transfer of the CTL one day but not 7 or 14 days after gene transfer. CD8+ T cell infiltrates were observed 7 days following adoptive transfer and were absent at 28 days, suggesting a small window for optimal AAV2 capsid antigen presentation in the liver. Additionally, mice were protected from capsid specific CD8+ T cells when treated with the proteasome inhibitor bortezomib, which impairs the generation of peptide epitopes for MHC I antigen presentation. We next tested in our model AAV8 vectors, which in mice show superior tropism for liver. Published pre-clinical data by others suggested lack of capsid-specific CD8+ cell activation with this serotype. While this was not borne out in a clinical trial, the onset of T cell responses and of transaminitis in humans appeared to be delayed for AAV8 vector (8–9 weeks after gene transfer) compared to AAV2 (3–4 weeks). In comparison to AAV2, CD8+ T cell transfer in AAV8 injected mice had a milder impact on circulating F.IX levels (<50% loss of expression as opposed to 4-fold loss with AAV2), and CD8+ T cell infiltrates were largely absent at day 7. In two different experiments, 25–40% of F.IX expressing hepatocytes were lost compared to AAV8-F.IX transduced mice that received no or control CD8+ T cells. However, when the T cells were transferred 7 or 14 days after AAV8 administration, a more robust loss of systemic F.IX expression was observed (3- to 5-fold), with a 45% and 32% reduction in F.IX expressing hepatocytes, respectively (Fig 1 A-C). CD8+ T cell infiltrates were prevalent by day 42 in the livers of these animals. Together, these data suggest that optimal AAV8 capsid presentation in the murine liver occurs between days 28 and 42 following gene transfer. This delay in targeting of AAV8 transduced murine liver is consistent with the delay observed between the AAV2 and AAV8 F.IX clinical trials. This murine model should be useful to (1) evaluate novel AAV serotypes and capsid variants, (2) test the effect of the vector dose, (3) test the effect of pharmacological modulation on capsid presentation and targeting by capsid-specific CTL, and (4) provide guidance for the timing for immune suppression. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Disclosures: High: Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy. Herzog:Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15211-e15211
Author(s):  
Lauren Virginia Wood ◽  
Siva K Gandhapudi ◽  
Karuna Sundarapandiyan ◽  
Frank K Bedu-Addo ◽  
Gregory Conn ◽  
...  

e15211 Background: Immunotherapy approaches are limited in their ability to induce antigen-specific CD8+ T cells in vivo able to recognize and kill tumor cells. We developed a novel immunotherapy approach using enantiomerically pure, R-DOTAP cationic lipid nanoparticles and tumor-derived T cell antigens, and previously demonstrated that R-DOTAP formulations efficiently prime cytotoxic T cells through enhanced cross presentation and induction of type I interferons.[1] A phase I clinical trial of a R-DOTAP HPV16 peptide formulation confirmed induction of strong in vivo HPV-specific CD8+ cytolytic T-cells without associated systemic toxicities. In this study, we assessed R-DOTAP nanoparticle formulations containing whole protein (ovalbumin) or long multi-epitope peptides from the tumor antigen TARP (T-cell alternate reading frame protein): a 58-residue protein overexpressed in prostate and breast cancers, documented to be immunogenic in humans. Methods: R-DOTAP formulations were prepared containing ovalbumin (OVA) or TARP peptides. C57BL/6K mice were immunized with 10 μg/mouse of OVA plus R-DOTAP, CFA or sucrose on Days 0, 15 and 30. OVA-specific cellular and humoral responses following vaccination were assessed by measuring splenic CD4 and CD8 T cell IFN-γ production and circulating OVA-specific antibodies in serum. HLA-A2 transgenic mice (AAD mice) were vaccinated with long, multi-epitope TARP peptides delivered as an R-DOTAP admixture or with CFA or sucrose on Days 0 and 7. Antigen-specific T cell responses were measured by IFN-γ ELISpot assay. Results: OVA R-DOTAP formulations induced strong antigen-specific effector CD4 and CD8 immune and memory responses detected 7 and 30 days, respectively, following vaccination as well as OVA-specific antibody responses. In TARP peptide vaccinated mice, R-DOTAP formulations were able to present multiple CD8 T cell epitopes and stimulate responses that were superior to CFA. Conclusions: Our results suggest that R-DOTAP is a versatile immune activating therapy that can be formulated with long, multi-epitope tumor-derived peptides or whole proteins. R-DOTAP formulations induce quantitatively robust antigen-specific CD4 and CD8 T cells in vivo compared to well-established immune stimulants. Reference: 1.Gandhapudi SK, Ward M, Bush JP et al. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. J Immunol 2019;202:3524-3536


2014 ◽  
Vol 307 (2) ◽  
pp. G233-G240 ◽  
Author(s):  
Shuaiyu Zheng ◽  
Hongyi Zhang ◽  
Xiaojin Zhang ◽  
Fei Peng ◽  
Xuyong Chen ◽  
...  

Interferon (IFN)-γ-driven and CD8+ T cell-dependent inflammatory injury to extrahepatic biliary epithelium (EHBE) is likely to be involved in the development of biliary atresia (BA). We previously showed that viral protein NSP4 is the pathogenic immunogen that causes biliary injury in BA. In this study, NSP4 or four synthetic NSP4 (NSP4157–170, NSP4144–152, NSP493–110, NSP424–32) identified by computer analysis as candidate CD8+ T cell epitopes were injected into neonatal mice. The pathogenic NSP4 epitopes were confirmed by studying extrahepatic bile duct injury, IFN-γ release and CD8+ T cell response against EHBE. The results revealed, at 7 days postinjection, inoculation of glutathione S-transferase (GST)-NSP4 caused EHBE injury and BA in neonatal mice. At 7 or 14 days postinject, inoculation of GST-NSP4, NSP4144–152, or NSP4157–170 increased IFN-γ release by CD8+ T cells, elevated the population of hepatic memory CD8+ T cells, and augmented cytotoxicity of CD8+ T cells to rhesus rotavirus (RRV)-infected or naive EHBE cells. Furthermore, depletion of CD8+ T cells in mice abrogated the elevation of GST-NSP4-induced serum IFN-γ. Lastly, parenteral immunization of mouse dams with GST-NSP4, NSP4144–152, or NSP4157–170 decreased the incidence of RRV-induced BA in their offspring. Overall, this study reports the CD8+ T cell response against EHBE is activated by epitopes within rotavirus NSP4 in experimental BA. Neonatal passive immunization by maternal vaccination against NSP4144–152 or NSP4157–170 is effective in protecting neonates from developing RRV-related BA.


Blood ◽  
2007 ◽  
Vol 110 (8) ◽  
pp. 2965-2973 ◽  
Author(s):  
Céline Beauvillain ◽  
Yves Delneste ◽  
Mari Scotet ◽  
Audrey Peres ◽  
Hugues Gascan ◽  
...  

Abstract Neutrophils are professional phagocytes that migrate early, in high number, to the infection sites. Our study has analyzed how neutrophils cross-present antigens and influence CD8+ T-cell responses. By using highly purified neutrophils from peritoneal exudates and bone marrow, we have shown that neutrophils cross-present ovalbumin to a CD8+ T-cell hybridoma and to naive CD8+ T cells from OT1 transgenic mice. Cross-presentation by neutrophils was TAP and proteasome dependent and was as efficient as in macrophages. Moreover, it actually occurred earlier than in professional antigen-presenting cells. Peritoneal exudate neutrophils from mice injected intraperitoneally with ovalbumin also cross-presented ovalbumin, proving that neutrophils take up and present exogenous antigens into major histocompatibility complex I (MHC I) molecules in vivo. We then evaluated the in vivo influence of antigen cross-presentation by neutrophils on CD8+ T-cell response using β2-microglobulin-deficient mice transferred with OT1 CD8+ T cells and injected with ovalbumin-pulsed neutrophils. Four days after neutrophil injection, OT1 cells proliferated and expressed effector functions (IFN-γ production and cytolysis). They also responded efficiently to a rechallenge with ovalbumin-pulsed dendritic cells in CFA. These data are the first demonstration that neutrophils cross-prime CD8+ T cells in vivo and suggest that they may constitute, together with professional antigen-presenting cells, an attractive target to induce cytotoxic T cells in vaccines.


2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.


2013 ◽  
Vol 87 (23) ◽  
pp. 12510-12522 ◽  
Author(s):  
Nayana Prabhu ◽  
Adrian W. Ho ◽  
Kenneth H. S. Wong ◽  
Paul Edward Hutchinson ◽  
Yen Leong Chua ◽  
...  

The factors that regulate the contraction of the CD8 T cell response and the magnitude of the memory cell population against localized mucosal infections such as influenza are important for generation of efficient vaccines but are currently undefined. In this study, we used a mouse model of influenza to demonstrate that the absence of gamma interferon (IFN-γ) or IFN-γ receptor 1 (IFN-γR1) leads to aberrant contraction of antigen-specific CD8 T cell responses. The increased accumulation of the effector CD8 T cell population was independent of viral load. Reduced contraction was associated with an increased fraction of CD8 T cells expressing the interleukin-7 receptor (IL-7R) at the peak of the response, resulting in enhanced numbers of memory/memory precursor cells in IFN-γ−/−and IFN-γR−/−compared to wild-type (WT) mice. Blockade of IL-7 within the lungs of IFN-γ−/−mice restored the contraction of influenza virus-specific CD8 T cells, indicating that IL-7R is important for survival and is not simply a consequence of the lack of IFN-γ signaling. Finally, enhanced CD8 T cell recall responses and accelerated viral clearance were observed in the IFN-γ−/−and IFN-γR−/−mice after rechallenge with a heterologous strain of influenza virus, confirming that higher frequencies of memory precursors are formed in the absence of IFN-γ signaling. In summary, we have identified IFN-γ as an important regulator of localized viral immunity that promotes the contraction of antigen-specific CD8 T cells and inhibits memory precursor formation, thereby limiting the size of the memory cell population after an influenza virus infection.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1342-1351 ◽  
Author(s):  
Zusen Fan ◽  
Ping Yu ◽  
Yang Wang ◽  
Yugang Wang ◽  
May Lynne Fu ◽  
...  

Natural killer (NK) cells are generally reported as innate effector cells for killing virally infected and transformed cells. It is unclear how NK cells evoke adaptive immunity to eradicate tumors. We now demonstrate that the TNF superfamily member, LIGHT, known as TNFSF14 and a T-cell costimulatory molecule, is a critical ligand for the activation of NK cells. Herpesvirus entry mediator (HVEM) is expressed on NK cells, and its engagement with LIGHT mediates NK-cell activation. The expression of LIGHT inside tumors leads to rapid rejection in a NK-dependent manner. Both NK and CD8+ cells are essential but not sufficient for the rejection of tumors because mice lacking either population fail to reject the tumor. Interestingly, activated NK cells do not kill tumors directly but can facilitate the priming of tumor-specific CD8+ T cells in an IFN-γ–dependent manner. Conversely, intratumor depletion of either NK cells or IFN-γ during tumor progression disrupts CD8+ cell–mediated tumor rejection, suggesting that the tumor is the essential site for the crosstalk between NK and CD8+ cells. Furthermore, IFNG-deficient NK cells fail to effectively activate CD8+ T cells, suggesting IFN-γ plays an important role in NK-mediated activation of cytotoxic T lymphocytes (CTLs). Our findings establish a direct role for LIGHT in NK activation/expansion and a critical helper role of activated NK cells in priming CD8+ T cells and breaking T-cell tolerance at the tumor site.


2008 ◽  
Vol 76 (10) ◽  
pp. 4609-4614 ◽  
Author(s):  
Dietmar M. W. Zaiss ◽  
Alice J. A. M. Sijts ◽  
Tim R. Mosmann

ABSTRACT Cytotoxicity is a key effector function of CD8 T cells. However, what proportion of antigen-specific CD8 T cells in vivo exert cytotoxic activity during a functional CD8 T-cell response to infection still remains unknown. We used the Lysispot assay to directly enumerate cytotoxic CD8 T cells from the spleen ex vivo during the immune response to infection with the intracellular bacterium Listeria monocytogenes. We demonstrate that not all antigen-responsive gamma interferon (IFN-γ)-secreting T cells display cytotoxic activity. Most CD8 T cells detected at early time points of the response were cytotoxic. This percentage continuously declined during both the expansion and contraction phases to about 50% at the peak and to <10% of IFN-γ-producing cells in the memory phase. As described for clonal expansion, this elaboration of a program of differentiation after an initial stimulus was not affected by antigen or CD4 help but, like proliferation, could be influenced by later reinfection. These data indicate that cytotoxic effector function during the response to infection is regulated independently from IFN-γ secretion or expansion or contraction of the overall CD8 T-cell response.


Sign in / Sign up

Export Citation Format

Share Document