scholarly journals Controlling inflammation

2005 ◽  
Vol 201 (5) ◽  
pp. 671-674 ◽  
Author(s):  
Roderick J. Flower ◽  
Mauro Perretti

The inflammatory response protects the body against infection and injury but can itself become deregulated with deleterious consequences to the host. It is now clear that several endogenous biochemical pathways activated during defense reactions can counterregulate inflammation. New experimental evidence adds resolvin E1 to this group of endogenous inhibitors and provides further rationale for the beneficial effects of dietary supplementation with fish oils. It also highlights an unexpected twist in the pharmacology of aspirin.

2021 ◽  
Vol 10 (6) ◽  
pp. 293-297
Author(s):  
Joanna Grzyb ◽  
◽  
Sebastian Grzyb ◽  

Diet and consumption of appropriate quality food products are one of the most important elements for good health and condition of the whole organism, including a proper appearance and healthy skin. The condition of the body and the skin is also influenced by additional dietary supplements, synthetic multi-ingredient preparations, especially the ones containing ingredients selected for their beneficial effects on the skin. The aim of the study was to describe the influence of dietary supplementation and the functional food for the condition of the skin, including preparations containing various nutrients and special-purpose food, which can have a beneficial effect on the skin and its healthy appearance. The scope of the work includes a review of literature and sources in the field of dietetics and cosmetology.


Author(s):  
Meisam Soleimani ◽  
Axel Haverich ◽  
Peter Wriggers

AbstractThis paper deals with the mathematical modeling of atherosclerosis based on a novel hypothesis proposed by a surgeon, Prof. Dr. Axel Haverich (Circulation 135(3):205–207, 2017). Atherosclerosis is referred as the thickening of the artery walls. Currently, there are two schools of thoughts for explaining the root of such phenomenon: thickening due to substance deposition and thickening as a result of inflammatory overgrowth. The hypothesis favored here is the second paradigm stating that the atherosclerosis is nothing else than the inflammatory response of of the wall tissues as a result of disruption in wall nourishment. It is known that a network of capillaries called vasa vasorum (VV) accounts for the nourishment of the wall in addition to the natural diffusion of nutrient from the blood passing through the lumen. Disruption of nutrient flow to the wall tissues may take place due to the occlusion of vasa vasorums with viruses, bacteria and very fine dust particles such as air pollutants referred to as PM 2.5. They can enter the body through the respiratory system at the first place and then reach the circulatory system. Hence in the new hypothesis, the root of atherosclerotic vessel is perceived as the malfunction of microvessels that nourish the vessel. A large number of clinical observation support this hypothesis. Recently and highly related to this work, and after the COVID-19 pandemic, one of the most prevalent disease in the lungs are attributed to the atherosclerotic pulmonary arteries, see Boyle and Haverich (Eur J Cardio Thorac Surg 58(6):1109–1110, 2020). In this work, a general framework is developed based on a multiphysics mathematical model to capture the wall deformation, nutrient availability and the inflammatory response. For the mechanical response an anisotropic constitutive relation is invoked in order to account for the presence of collagen fibers in the artery wall. A diffusion–reaction equation governs the transport of the nutrient within the wall. The inflammation (overgrowth) is described using a phase-field type equation with a double well potential which captures a sharp interface between two regions of the tissues, namely the healthy and the overgrowing part. The kinematics of the growth is treated by classical multiplicative decomposition of the gradient deformation. The inflammation is represented by means of a phase-field variable. A novel driving mechanism for the phase field is proposed for modeling the progression of the pathology. The model is 3D and fully based on the continuum description of the problem. The numerical implementation is carried out using FEM. Predictions of the model are compared with the clinical observations. The versatility and applicability of the model and the numerical tool allow.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Conor McQuaid ◽  
Molly Brady ◽  
Rashid Deane

Abstract Background SARS-CoV-2, a coronavirus (CoV), is known to cause acute respiratory distress syndrome, and a number of non-respiratory complications, particularly in older male patients with prior health conditions, such as obesity, diabetes and hypertension. These prior health conditions are associated with vascular dysfunction, and the CoV disease 2019 (COVID-19) complications include multiorgan failure and neurological problems. While the main route of entry into the body is inhalation, this virus has been found in many tissues, including the choroid plexus and meningeal vessels, and in neurons and CSF. Main body We reviewed SARS-CoV-2/COVID-19, ACE2 distribution and beneficial effects, the CNS vascular barriers, possible mechanisms by which the virus enters the brain, outlined prior health conditions (obesity, hypertension and diabetes), neurological COVID-19 manifestation and the aging cerebrovascualture. The overall aim is to provide the general reader with a breadth of information on this type of virus and the wide distribution of its main receptor so as to better understand the significance of neurological complications, uniqueness of the brain, and the pre-existing medical conditions that affect brain. The main issue is that there is no sound evidence for large flux of SARS-CoV-2 into brain, at present, compared to its invasion of the inhalation pathways. Conclusions While SARS-CoV-2 is detected in brains from severely infected patients, it is unclear on how it gets there. There is no sound evidence of SARS-CoV-2 flux into brain to significantly contribute to the overall outcomes once the respiratory system is invaded by the virus. The consensus, based on the normal route of infection and presence of SARS-CoV-2 in severely infected patients, is that the olfactory mucosa is a possible route into brain. Studies are needed to demonstrate flux of SARS-CoV-2 into brain, and its replication in the parenchyma to demonstrate neuroinvasion. It is possible that the neurological manifestations of COVID-19 are a consequence of mainly cardio-respiratory distress and multiorgan failure. Understanding potential SARS-CoV-2 neuroinvasion pathways could help to better define the non-respiratory neurological manifestation of COVID-19.


Author(s):  
Wen-Yang Lin ◽  
Yi-Wei Kuo ◽  
Ching-Wei Chen ◽  
Yu-Fen Huang ◽  
Chen-Hung Hsu ◽  
...  

AbstractOral-nasal mucosal immunity plays a crucial role in protecting the body against bacterial and viral invasion. Safe probiotic products have been used to enhance human immunity and oral health. In this study, we verified the beneficial effects of mixed viable probiotic tablets, consisting of Lactobacillus salivarius subsp. salicinius AP-32, Bifidobacterium animalis subsp. lactis CP-9, and Lactobacillus paracasei ET-66, and heat-killed probiotic tablets, consisting of L. salivarius subsp. salicinius AP-32 and L. paracasei ET-66, on oral immunity among 45 healthy participants. Participants were randomly divided into viable probiotic, heat-killed probiotic, and placebo groups. The administration of treatment lasted for 4 weeks. Saliva samples were collected at Weeks 0, 2, 4, and 6, and Lactobacillus, Bifidobacterium and Streptococcus mutans populations and IgA concentration were measured. IgA concentrations, levels of TGF-beta and IL-10 in PBMCs cells were quantified by ELISA method. Results showed that salivary IgA levels were significantly increased on administration of both the viable (119.30 ± 12.63%, ***P < 0.001) and heat-killed (116.78 ± 12.28%, ***P < 0.001) probiotics for 4 weeks. Among three probiotic strains, AP-32 would effectively increase the levels of TGF-beta and IL-10 in PBMCs. The oral pathogen Streptococcus mutans was significantly reduced on viable probiotic tablet administration (49.60 ± 31.01%, ***P < 0.001). The in vitro antibacterial test confirmed that viable probiotics effectively limited the survival rate of oral pathogens. Thus, this clinical pilot study demonstrated that oral probiotic tablets both in viable form or heat-killed form could exert beneficial effects on oral immunity via IL-10, TGB-beta mediated IgA secretion. The effective dosage of viable probiotic content in the oral tablet was 109 CFUs/g and the heat-killed oral tablet was 1 × 1010 cells/g.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rebecca N. Monastero ◽  
Srinivas Pentyala

Cytokines, including interleukins, interferons, tumor necrosis factors, and chemokines, have a variety of pro- and anti-inflammatory effects in the body through a number of biochemical pathways and interactions. Stimuli, actions, interactions, and downstream effects of cytokines have been investigated in more depth in recent years, and clinical research has also been conducted to implicate cytokines in causal patterns in certain diseases. However, particular cutoffs of cytokines as biomarkers for disease processes have not been well studied, and this warrants future work to potentially improve diagnoses for diseases with inflammatory markers. A limited number of studies in this area are reviewed, considering diseases correlated with abnormal cytokine profiles, as well as specific cutoffs at which cytokines have been deemed clinically useful for diagnosing those diseases through Receiver Operator Characteristics modeling. In light of studies such as those discussed in this review, cytokine testing has the potential to support diagnosis due to its lack of invasiveness and low cost, compared to other common types of testing for infections and inflammatory diseases.


2021 ◽  
Vol 22 (5) ◽  
pp. 2639
Author(s):  
Ana Rita de Oliveira dos Santos ◽  
Bárbara de Oliveira Zanuso ◽  
Vitor Fernando Bordin Miola ◽  
Sandra Maria Barbalho ◽  
Patrícia C. Santos Bueno ◽  
...  

Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.


2013 ◽  
Vol 110 (7) ◽  
pp. 1243-1252 ◽  
Author(s):  
Marie C. Lewis ◽  
Dilip V. Patel ◽  
Jenni Fowler ◽  
Swantje Duncker ◽  
Adrian W. Zuercher ◽  
...  

Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in a reduction in IgA (P< 0·0005) and IgM (P< 0·009) production by mucosal tissues but had no effect on IgG production (P>0·05). Probiotic-supplemented pigs had more mast cells than unsupplemented littermates (P< 0·0001), although numbers in both groups were low. In addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P< 0·05). The present findings are consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes of nutritional intervention.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Rajkumar Verma ◽  
Nia Harris ◽  
Brett Friedler ◽  
Joshua Crapser ◽  
Anita Patel ◽  
...  

Background: Age is an important non-modifiable risk factor for stroke. Stroke rates double every decade after age 55. Social isolation (SI) exacerbates behavioural deficits, slows functional recovery and worsens histological injury after stroke in young animals, primarily by increasing the inflammatory response. However, the inflammatory response differs in aging, and whether the detrimental effects of SI are seen in aged animals is unknown. We hypothesize that acute and chronic post stroke SI will worsen stroke pathology and recovery in aged mice and pair housing (PH) will reverse these effects. Methods: Eighteen-month-old male C57BL/6 mice were pair housed (PH) for two weeks prior to stroke and randomly assigned to various housing conditions immediately after stroke. Behavioral analysis was done weekly starting at day 7. Mice were sacrificed either at 72 hours or 4 weeks after 60-minute right MCAO or sham surgery (n=9-10/group). Results: Mice isolated after stroke (ST-ISO) mice had significantly greater hemispheric infarct volume and neurological deficit scores (p<.05. n=13/group) than pair-housed (PH) stroke mice at 72 hours. SI mice that were isolated immediately after stroke showed significantly higher plasma IL-6 levels compared to PH sham (P<.001, n=13/group ) or PH stroke mice (P<.05) after 72 hour, but levels were similar by 4 weeks post-stroke (n=9-14/group). No change in tissue atrophy was seen after 4 weeks, however a significant interaction [F (1, 28) = 259.6, P<0.001] between housing and stroke was found in the Novel Object Recognition Task (NORT) at day 14. PH led to increased expression of Brain-derived neurotrophic factor (BDNF) and myelin basic protein (MBP) by IHC and western blot (n=5/group for IHC and n= 4/ western blot). Conclusions: Social isolation immediately after stroke led to enhanced injury acutely. Despite similar infarcts at 4 weeks, SI mice had delayed behavioral recovery. Pair housing led to increased expression of BDNF and myelin protein expression. Therefore, the beneficial effects of pair housing may be related to BDNF and MBP expression and enhanced recovery after injury in aged animals.


Sign in / Sign up

Export Citation Format

Share Document