scholarly journals Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation

2018 ◽  
Vol 215 (9) ◽  
pp. 2445-2461 ◽  
Author(s):  
Michelle N. Wray-Dutra ◽  
Raghav Chawla ◽  
Kerri R. Thomas ◽  
Brenda J. Seymour ◽  
Tanvi Arkatkar ◽  
...  

Activating mutations in the adapter protein CARD11 associated with diffuse large B cell lymphomas (DLBCLs) are predicted to arise during germinal center (GC) responses, leading to inappropriate activation of NF-κB signaling. Here, we modeled the B cell–intrinsic impact of the L251P activating mutation in CARD11 (aCARD11) on the GC response. Global B cell aCARD11 expression led to a modest increase in splenic B cells and a severe reduction in B1 B cell numbers, respectively. Following T cell–dependent immunization, aCARD11 cells exhibited increased rates of GC formation, resolution, and differentiation. Restriction of aCARD11 to GC B cells similarly altered the GC response and B cell differentiation. In this model, aCARD11 promoted dark zone skewing along with increased cycling, AID levels, and class switch recombination. Furthermore, aCard11 GC B cells displayed increased biomass and mTORC1 signaling, suggesting a novel strategy for targeting aCARD11-driven DLBCL. While aCARD11 potently impacts GC responses, the rapid GC contraction suggests it requires collaboration with events that limit terminal differentiation to promote lymphoma.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ting-ting Zhang ◽  
David G Gonzalez ◽  
Christine M Cote ◽  
Steven M Kerfoot ◽  
Shaoli Deng ◽  
...  

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


2021 ◽  
Author(s):  
C. N. Jondle ◽  
K. E. Johnson ◽  
W. P. Mboko ◽  
V. L. Tarakanova

Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4 + T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4 + T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4 + T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Amparo Toboso-Navasa ◽  
Arief Gunawan ◽  
Giulia Morlino ◽  
Rinako Nakagawa ◽  
Andrea Taddei ◽  
...  

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC–MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC–MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC–MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 767-776 ◽  
Author(s):  
Shengli Xu ◽  
Ke Guo ◽  
Qi Zeng ◽  
Jianxin Huo ◽  
Kong-Peng Lam

Abstract MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression and are important for pre-B and follicular B lymphopoiesis as demonstrated, respectively, by mb-1-Cre– and cd19-Cre–mediated deletion of Dicer, the RNase III enzyme critical for generating mature miRNAs. To explore the role of miRNAs in B-cell terminal differentiation, we use Aicda-Cre to specifically delete Dicer in activated B cells where activation-induced cytidine deaminase is highly expressed. We demonstrate that mutant mice fail to produce high-affinity class-switched antibodies and generate memory B and long-lived plasma cells on immunization with a T cell–dependent antigen. More importantly, germinal center (GC) B-cell formation is drastically compromised in the absence of Dicer, as a result of defects in cell proliferation and survival. Dicer-deficient GC B cells express higher levels of cell cycle inhibitor genes and proapoptotic protein Bim. Ablation of Bim could partially rescue the defect in GC B-cell formation in Dicer-deficient mice. Taken together, our data suggest that Dicer and probably miRNAs are critical for GC B-cell formation during B-cell terminal differentiation.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1796-1802 ◽  
Author(s):  
Liliana Guedez ◽  
Adnan Mansoor ◽  
Bente Birkedal-Hansen ◽  
Megan S. Lim ◽  
Paula Fukushima ◽  
...  

Tissue inhibitors of metalloproteinases (TIMPs), first described as specific inhibitors of matrix metalloproteinases, have recently been shown to exert growth factor activities. It was previously demonstrated that TIMP-1 inhibits apoptosis in germinal center B cells and induces further differentiation. Interleukin-10 (IL-10) is reported as a vital factor for the differentiation and survival of germinal center B cells and is also a negative prognostic factor in non-Hodgkin lymphoma (NHL). However, the mechanism of IL-10 activity in B cells and the regulation of its expression are not well understood. IL-10 has been shown to up-regulate TIMP-1 in tissue macrophages, monocytes, and prostate cancer cell lines, but IL-10 modulation of TIMP-1 in B cells and the effect of TIMP-1 on IL-10 expression has not been previously studied. It was found that TIMP-1 expression regulates IL-10 levels in B cells and that TIMP-1 mediates specific B-cell differentiation steps. TIMP-1 inhibition of apoptosis is not IL-10 dependent. TIMP-1 expression in B-cell NHL correlates closely with IL-10 expression and with high histologic grade. Thus, TIMP-1 regulates IL-10 expression in B-cell NHL and, through the inhibition of apoptosis, appears responsible for the negative prognosis associated with IL-10 expression in these tumors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2050-2050
Author(s):  
Tomomi Sakai ◽  
Momoko Nishikori ◽  
Masaharu Tashima ◽  
Ryo Yamamoto ◽  
Toshio Kitawaki ◽  
...  

Abstract BCL2/IGH translocation is a hallmark of follicular lymphoma and diffuse large B-cell lymphoma of germinal center B-cell type. Although being a strong determinant of these histological subtypes, this translocation is considered to be insufficient by itself and further gene alterations are necessary for cellular transformation. In Eμ-BCL2 transgenic (Tg) mice, B-lineage cells are increased by several-fold compared to wild-type (WT) mice, but only 5–15 % of them develop disease in the first year of life. To clarify how the BCL2 translocation contributes to the development of specific lymphoma subtypes, we created two types of chimeric mouse models to characterize the biological features of BCL2-overexpressing B cells in normal individuals. First, we introduced CD19 promoter-driven BCL2 and its mutant genes to a minor population of murine bone marrow cells by using a lentiviral vector system and transplanted into irradiated mice. BCL2-overexpressing B cells showed increased follicular and reduced marginal zone populations. The same phenotypic shift was observed in B cells introducing BCL2-Y28F mutant that retained anti-apoptotic function, but a defective mutant BCL2-G142A and a mock vector did not affect B-cell phenotype. Additionally, BCL2-introduced B cells showed decreased cell size compared to those introduced BCL2-G142A and mock vectors. To assess the functional alteration of BCL2-overexpressing B cells, TNP-Ficoll binding experiment was performed. The result showed diminished T-cell independent response in parallel with decreased marginal zone B cells. The low transformation frequency of B cells in Eμ-BCL2 Tg mice has been partly explained by their propensity to reside in the G0 phase of the cell cycle (reviewed in Oncogene, 18:5268,1999). We hypothesized that the microenvironment of B cells in Eμ-BCL2 Tg mice might be altered by abnormal B cells themselves. To evaluate the influence of the different microenvironments on BCL2-overexpressing B cells, we next made Eμ-BCL2/CAG-GFP double Tg mice and transferred their bone marrow mononuclear cells into WT or Eμ-BCL2 Tg mice. Blastic cell population of BCL2+GFP+ B cells was larger in those transferred to WT mice compared to those transferred to Eμ-BCL2 Tg mice, regardless of the same phenotypic preference toward follicular B cells. BrdU uptake experiments demonstrated continuous cell cycle progression of the BCL2+GFP+ B cells in WT mice but repressed cell cycle of those in Eμ-BCL2 Tg mice. In immunohistochemical analysis, splenic follicles were disorganized with reduced follicular dendritic cells and inadequate T cell accumulation in Eμ-BCL2 Tg mice. Functional impairment of splenic follicles in Eμ-BCL2 Tg mice might be caused by decreased marginal zone B cell subset, as the antigen capture and delivery by marginal zone B cells was reported to play an important role in the development of follicular dendritic cells. To understand the fate of BCL2-overexpressing B cells after stimulation, we finally assessed their terminal differentiation capacity in vitro. Plasma cell differentiation was suppressed in B cells derived from Eμ-BCL2 Tg mice under either LPS or anti-IgM antibody stimulation. BCL2 is reported to impede the activity of transcription factor NF-AT (Proc Natl Acad Sci93:9545,1996; Nature386:728,1997), and we found that calcineurin inhibitor FK506 suppressed plasma cell differentiation of WT B cells. Gene regulation patterns of the Eμ-BCL2+ B cells were similar to B cells stimulated in the presence of FK506 as well, suggesting that repressed terminal differentiation in Eμ-BCL2+ B cells was partly caused by the suppressed activity of NF-AT. In summary, BCL2-deregulated B cells preferentially differentiate into follicular B cells, and as a result of decreased terminal differentiation in addition to their anti-apoptotic property, they may be obliged to survive and recirculate as memory B cells, and accumulate genetic abnormalities while they repeatedly pass through the germinal center. As the germinal center is the particular site where they can counterbalance the cell cycle-retarding effect of BCL2, it may be a specific place for generating lymphoma triggered by BCL2/IGH translocation. Our results emphasize the importance of the microenvironment of pre-malignant cells during transformation process, and suggest that a simple transgenic mouse model may not be always appropriate for the study of oncogenesis.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Toru Tamahara ◽  
Kyoko Ochiai ◽  
Akihiko Muto ◽  
Yukinari Kato ◽  
Nicolas Sax ◽  
...  

ABSTRACT The transcription factor Bach2 regulates both acquired and innate immunity at multiple steps, including antibody class switching and regulatory T cell development in activated B and T cells, respectively. However, little is known about the molecular mechanisms of Bach2 regulation in response to signaling of cytokines and antigen. We show here that mammalian target of rapamycin (mTOR) controls Bach2 along B cell differentiation with two distinct mechanisms in pre-B cells. First, mTOR complex 1 (mTORC1) inhibited accumulation of Bach2 protein in nuclei and reduced its stability. Second, mTOR complex 2 (mTORC2) inhibited FoxO1 to reduce Bach2 mRNA expression. Using expression profiling and chromatin immunoprecipitation assay, the Ccnd3 gene, encoding cyclin D3, was identified as a new direct target of Bach2. A proper cell cycle was lost at pre-B and mature B cell stages in Bach2-deficient mice. Furthermore, AZD8055, an mTOR inhibitor, increased class switch recombination in wild-type mature B cells but not in Bach2-deficient cells. These results suggest that the mTOR-Bach2 cascade regulates proper cell cycle arrest in B cells as well as immunoglobulin gene rearrangement.


2020 ◽  
Author(s):  
Silke E. Lindner ◽  
Colt A. Egelston ◽  
Stephanie M. Huard ◽  
Peter P. Lee ◽  
Leo D. Wang

ABSTRACTRho family GTPases are critical for normal B cell development and function and their activity is regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, the role of GAPs in B cell development is poorly understood. Here we show that the novel Rac-GAP ARHGAP25 is important for B cell development in mice in a CXCR4-dependent manner. We show that Arhgap25 deficiency leads to a significant decrease in peripheral blood B cell numbers, as well as defects in mature B cell differentiation. Arhgap25-/- B cells respond to antigen stimulation in vitro and in vivo but have impaired germinal center formation and decreased IgG1 class switching. Additionally, Arhgap25-/- B cells exhibit increased chemotaxis to CXCL12. Taken together, these studies demonstrate an important role for Arhgap25 in peripheral B cell development and antigen response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4465-4465
Author(s):  
Yulei Shen ◽  
Himabindu Ramachandrareddy ◽  
Wing C. Chan ◽  
Timothy McKeithan

Abstract Chromosomal translocations at 3q27 involving BCL6 occur in two different regions. Rearrangements with breaks within the major breakpoint region (MBR), comprising the first exon and part of the first intron of BCL6, are among the most common genetic abnormalities in of B-cell non-Hodgkin lymphoma, whereas breaks within an alternative breakpoint region (ABR), located between 245 and 285 kb 5′ to BCL6, have also been reported in follicular lymphoma grade and a small group (6.4%) of diffuse large B-cell lymphomas (DLBCLs). As a result of the MBR translocation, BCL6 expression is deregulated by promoter substitution with either immunoglobulin (Ig) genes or non-Ig genes as partners. A role for deregulated BCL6 expression in the pathogenesis of DLBCL has previously been confirmed in a mouse model. However, the biological role of the more distant ABR region is still not known. Using real-time PCR, we identified in the ABR region an evolutionarily conserved DNase I hypersensitive site (named Far5) which contains a conserved composite binding site for transcription factors PU.1 and IRF4, both of which play important roles in B-cell differentation. Further studies demonstrated that chromatin in the Far5 region, 190kb upstream of BCL6 promoter, has an open configuration in DHL6, Granta 519 and U266 cell lines. Far5 DNA showed enhancer activity by a luciferase reporter assay. PU.1 binds to Far5 in vivo (DHL16 cell line) by a chromatin immunoprecipitation (ChIP) assay, and PU.1 binds in vitro to the conserved PU.1/IRF composite site in Far5 synergistically with either IRF4 or IRF8. ChIP-on-chip assays showed Far5 histone H3K4 monomethylation, a chromatin modification associated with gene enhancers and other regulatory elements. In addition, we identified a transcript upstream of the Far5 region that is specifically expressed in germinal center (GC) B cells, but not at other stages of B-cell differentation. These results indicated that Far5 may play a role in selective expression of intergenic transcripts in GC B-cells. In other genes, intergenic transcription plays a role in looping between distal regulatory regions and the promoter. Our data showed that ABR region is constitutively active in GC B-cells and may play an important role in increasing BCL6 transcription when naïve B cells differentiate into GC B-cells. Further investigation of interactions between the ABR and the BCL6 promoter will uncover the regulatory function of the BCL6 ABR in B-cell differentiation and B-cell lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 705-705
Author(s):  
Jenny Zhang ◽  
Dereje D. Jima ◽  
Cassandra L. Jacobs ◽  
Eva Gottwein ◽  
Grace Huang ◽  
...  

Abstract Background: Mature B cell differentiation provides an important mechanism for the acquisition of adaptive immunity. Malignancies derived from mature B cells are common and constitute the majority of leukemias and lymphomas. MicroRNAs are known to play a role in oncogenesis, lineage-selection, and immune cell function, including early B cell differentiation. However, the full extent and function of microRNA expression during mature B cell differentiation and in B cell malignancies are not known. Methods: From normal young patients undergoing tonsillectomies, we sorted the mature B cell subsets (naive, germinal center, memory and plasma) using FACS, based on their expression of CD19, CD38, IgD and CD27. These sorted B cells were profiled for microRNA expression using a highly sensitive multiplexed real-time PCR assay, as well as for gene expression at the whole genome level using Affymetrix U133plus microarrays. miRNA targets can be predicted based on seed sequence matching of their 2–8 nt to the 3′UTR of gene transcripts. For each B cell stage, we experimentally validated microRNA regulation of predicted target genes of interest, LMO2, MYBL1 and PRDM1, by microRNA over-expression experiments and luciferase assays. Results: We found that microRNAs have a characteristic expression pattern that defines each mature B cell stage. Examination of both microRNA and mRNA expression showed that in each B cell population, the target genes predicted based on seed matching were expressed at lower levels, results that were highly significant (P<1E-10). We found that differential microRNA expression is important at every B cell stage transition, and differentially expressed microRNAs frequently target differentially expressed transcription factors. In the naive to germinal center B cell and germinal center B cell to memory cell transitions, we found that miR-223 had an inverse relationship with its predicted target genes LMO2 and MYBL1. To test this relationship predicted based on seed pairing, in Germinal Center-derived BJAB cells, we over-expressed miR-223 by introducing its precursor, and saw a subsequent knockdown of LMO2 and MYBL1 at both the mRNA and protein level. We confirmed seed sequence specificity by comparing miR-223 knockdown of luciferase reporter activity on the LMO2 3′UTR compared to its seed sequence mutant. We further found that miR-9 and miR-30 family members directly regulate PRDM1 (blimp1), a master regulator of the GC to PC transition. In U266 cells (PC-derived), introduction of miR-9 and miR-30 family precursor resulted in decreased PRDM1 protein expression, although transcript levels were not changed, consistent with previous evidence that miRNA can regulate at the post-transcriptional steps. We further profiled over 50 tumors derived from various B cell malignancies (small lymphocytic lymphoma, Burkitt lymphoma, and the molecular subsets of diffuse large B cell lymphoma) and found that these malignancies maintain the expression patterns of their respective lineage; microRNA expression profiles of normal B cells could correctly classify the lineage of these tumors in over 80% of the cases. In contrast to other malignancies, common lymphomas do not down-regulate microRNAs, but rather maintain the microRNA-expression patterns of their normal B-cell counterparts. Conclusion: Through concomitant microRNA and mRNA-profiling, we demonstrate a regulatory role for microRNAs at every stage in mature B-cell differentiation. Further, we have experimentally identified a direct role for the microRNA-regulation of key transcription factors in B-cell differentiation: LMO2, MYBL1 and PRDM1 (Blimp1). Thus, our data demonstrate that microRNAs may be important in maintaining the mature B-cell phenotype in normal and malignant B-cells.


Sign in / Sign up

Export Citation Format

Share Document