scholarly journals αβγδ T cells play a vital role in fetal human skin development and immunity

2021 ◽  
Vol 218 (4) ◽  
Author(s):  
René Reitermaier ◽  
Thomas Krausgruber ◽  
Nikolaus Fortelny ◽  
Tanya Ayub ◽  
Pablo Augusto Vieyra-Garcia ◽  
...  

T cells in human skin play an important role in the immune defense against pathogens and tumors. T cells are present already in fetal skin, where little is known about their cellular phenotype and biological function. Using single-cell analyses, we identified a naive T cell population expressing αβ and γδ T cell receptors (TCRs) that was enriched in fetal skin and intestine but not detected in other fetal organs and peripheral blood. TCR sequencing data revealed that double-positive (DP) αβγδ T cells displayed little overlap of CDR3 sequences with single-positive αβ T cells. Gene signatures, cytokine profiles and in silico receptor–ligand interaction studies indicate their contribution to early skin development. DP αβγδ T cells were phosphoantigen responsive, suggesting their participation in the protection of the fetus against pathogens in intrauterine infections. Together, our analyses unveil a unique cutaneous T cell type within the native skin microenvironment and point to fundamental differences in the immune surveillance between fetal and adult human skin.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


2012 ◽  
Vol 94 (5) ◽  
pp. 456-464 ◽  
Author(s):  
Emily Mavin ◽  
Shaheda S. Ahmed ◽  
Graeme O’Boyle ◽  
Brie Turner ◽  
Stephen Douglass ◽  
...  

2018 ◽  
Vol 46 (4) ◽  
pp. 441-449
Author(s):  
Sowmya Angusamy ◽  
Tamer Mansour ◽  
Mohammed Abdulmageed ◽  
Rachel Han ◽  
Brian C. Schutte ◽  
...  

Abstract Background: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. Methods: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. Results: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. Conclusions: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


2018 ◽  
Author(s):  
Jerome S. Harms ◽  
Mike Khan ◽  
Cherisse Hall ◽  
Gary A. Splitter ◽  
E. Jane Homan ◽  
...  

ABSTRACTBrucella spp are intracellular pathogenic bacteria remarkable in their ability to escape immune surveillance and therefore inflict a state of chronic disease within the host. To enable further immune response studies, Brucella were engineered to express the well characterized chicken ovalbumin (OVA). Surprisingly, we found that CD8 T cells bearing T cell receptors (TCR) nominally specific for the OVA peptide SIINFEKL (OT-1) reacted to parental Brucella-infected targets as well as OVA-expressing Brucella variants in cytotoxicity assays. Furthermore, splenocytes from Brucella immunized mice produced IFN-γ and exhibited cytotoxicity in response to SIINFEKL-pulsed target cells. To determine if the SIINFEKL-reactive OT-1 TCR could be cross-reacting to Brucella peptides, we searched the Brucella proteome using an algorithm to generate a list of near-neighbor nonamer peptides that would bind to H2Kb. Selecting five Brucella peptide candidates, along with controls, we verified that several of these peptides mimicked SIINFEKL resulting in T cell activation through the “SIINFEKL-specific” TCR. Activation was dependent on peptide concentration as well as sequence. Our results underscore the complexity and ubiquity of cross-reactivity in T cell recognition. This cross-reactivity may enable microbes such as Brucella to escape immune surveillance by presenting peptides similar to the host, and may also lead to the activation of autoreactive T cells.


1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.


Author(s):  
Manman Dai ◽  
Li Zhao ◽  
Ziwei Li ◽  
Xiaobo Li ◽  
Bowen You ◽  
...  

It is well known that chicken CD8+ T cell response is vital to clearing viral infections. However, the differences between T cell subsets expressing CD8 receptors in chicken peripheral blood mononuclear cells (PBMCs) have not been compared. Herein, we used Smart-Seq2 scRNA-seq technology to characterize the difference of chicken CD8high+, CD8high αα+, CD8high αβ+, CD8medium+, and CD4+CD8low+ T cell subsets from PBMCs of avian leukosis virus subgroup J (ALV-J)-infected chickens. Weighted gene co-expression network analysis (WGCNA) and Trend analysis revealed that genes enriched in the “Cytokine–cytokine receptor interaction” pathway were most highly expressed in the CD8high αα+ T cell population, especially T cell activation or response-related genes including CD40LG, IL2RA, IL2RB, IL17A, IL1R1, TNFRSF25, and TNFRSF11, suggesting that CD8high αα+ T cells rather than other CD8 subpopulations were more responsive to ALV-J infections. On the other hand, genes involved in the “FoxO signaling pathway” and “TGF-beta signaling pathway” were most highly expressed in the CD4+CD8low+ (CD8low+) T cell population and the function of CD4+CD8low+ T cells may play roles in negatively regulating the functions of T cells based on the high expression of CCND1, ROCK1, FOXO1, FOXO3, TNFRSF18, and TNFRSF21. The selected gene expressions in CD8+ T cells and CD4+CD8low+ double-positive T cells confirmed by qRT-PCR matched the Smart-Seq2 data, indicating the reliability of the smart-seq results. The high expressions of Granzyme K, Granzyme A, and CCL5 indicated the positive response of CD8+ T cells. Conversely, CD4+CD8+ T cells may have the suppressor activity based on the low expression of activation molecules but high expression of T cell activity suppressor genes. These findings verified the heterogeneity and transcriptional differences of T cells expressing CD8 receptors in chicken PBMCs.


1991 ◽  
Vol 174 (2) ◽  
pp. 417-424 ◽  
Author(s):  
T Abo ◽  
T Ohteki ◽  
S Seki ◽  
N Koyamada ◽  
Y Yoshikai ◽  
...  

We demonstrated in the present study that with bacterial stimulation, an increased number of alpha/beta T cells proliferated in the liver of mice and that even T cells bearing self-reactive T cell receptor (TCR) (or forbidden T cell clones), as estimated by anti-V beta monoclonal antibodies in conjunction with immunofluorescence tests, appeared in the liver and, to some extent, in the periphery. The majority (greater than 80%) of forbidden clones induced had double-negative CD4-8-phenotype. In a syngeneic mixed lymphocyte reaction, these T cells appear to be self-reactive. Such forbidden clones and normal T cells in the liver showed a two-peak pattern of TCR expression, which consisted of alpha/beta TCR dull and bright positive cells, as seen in the thymus. A systematic analysis of TCR staining patterns in the various organs was then carried out. T cells from not only the thymus but also the liver had the two-peak pattern of alpha/beta TCR, whereas all of the other peripheral lymphoid organs had a single-peak pattern of TCR. However, T cells in the liver were not comprised of double-positive CD4+8+ cells, which predominantly reside in the thymus. The present results therefore suggest that T cell proliferation in the liver might reflect a major extrathymic pathway for T cell differentiation and that this hepatic pathway has the ability to produce T cells bearing self-reactive TCR under bacterial stimulation, probably due to the lack of a double-positive stage for negative selection.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 5529-5529
Author(s):  
Cailin Joyce ◽  
Dhan Chand ◽  
Benjamin Duckless ◽  
Manuel Hidalgo ◽  
Joseph Elan Grossman ◽  
...  

5529 Background: The development and clinical application of immune checkpoint inhibitors has transformed the therapeutic landscape for cancer treatment in recent years. Balstilimab (AGEN2034) is a fully human, monoclonal IgG4 antibody that binds with high affinity to programmed death 1 (PD-1), thus preventing the interaction between this receptor and its ligands programmed death ligand 1 and 2 (PD-L1, PD-L2). Emerging evidence suggests that balstilimab exhibits a differentiated activity profile compared to currently approved anti-PD-1 agents, including pembrolizumab and nivolumab. Methods: Balstilimab as monotherapy was evaluated in a large phase 2 study in patients (pts) with recurrent/metastatic cervical cancer who had relapsed after a platinum-based treatment regimen for advanced disease. Pts were dosed at 3 mg/kg once every 2 weeks for up to 24 months and antitumor activity was assessed using RECIST v1.1. The tumor cell killing activity of balstilimab was evaluated preclinically in a human co-culture system of (1) primary T cells engineered to recognize NY-ESO-1 and (2) NY-ESO-1+ cancer cell lines, including PD-L1 and/or PD-L2-deficient engineered lines. The co-culture system was maintained for ̃ two weeks to drive partial T cell exhaustion; a state where cytotoxicity is compromised but recoverable with PD-1 blockade. Cytotoxicity of these partially exhausted T cells was quantified against PD-L1/L2 double positive, single positive, or double negative cancer cells in the presence or absence of PD-(L)1 antibodies. Results: In the second-line treatment setting for pts with advanced cervical cancer, balstilimab showed a numerically higher objective response rate (ORR) in subjects with PD-L1+, squamous cell carcinoma (SCC) tumors (21%, 95% CI, 12.7-32.6%) than those reported for pembrolizumab. Unlike pembrolizumab, balstilimab showed activity in PD-L1(-) pts, and irrespective of tumor histology (ORR 7.9%, 95% CI, 2.7-20.8%). Despite lower overall PD-L1 positivity compared to SCC (41.7 v 72.9%), an ORR of 12.5% (95% CI, 5.9-24.7%) was observed in the subset of pts with a poorer prognosis, those with cervical adenocarcinoma. Concordant with clinical observations, balstilimab demonstrated superior rescue of antigen-specific T cell cytotoxicity in vitro relative to pembrolizumab, nivolumab, or atezolizumab. Balstilimab also induced cytotoxicity against PD-L1 and/or PD-L2 deficient target cancer cells. Conclusions: Taken together, these data suggest functional differentiation of balstilimab from other PD-1 inhibitors with potentially important implications for extending the therapeutic reach of anti-PD-1 therapy. Investigation of the underlying mechanistic basis for these findings is ongoing. Clinical trial information: NCT03104699.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Dina Soliman ◽  
Sherin Sallam ◽  
Susanna Akiki ◽  
Deena Mudawi ◽  
Feryal Ibrahim

T-cell large granular lymphocytic leukemia is characterized by clonal expansion of a CD3+/CD57+ subpopulation, which are typically CD8+ positive cytotoxic T- cells, and can only be diagnosed if there is a persistent, greater than 6 months, elevation of LGL in the blood (usually 2–20 × 109/L), in the absence of an identifiable cause. T-LGLL has been associated with reactive conditions such as autoimmune diseases and viral infections and has also been reported in association with hematologic and non-hematologic malignancies. We report a case of asymptomatic CD4/CD8 double-positive T-LGLL. Flow cytometry on peripheral blood revealed a subpopulation of CD4/CD8 double-positive T cells expressing CD57 and cTIA. Clonality was established by flow cytometric analysis of T-cell receptor V(â) region repertoire which showed that >70% of the cells failed to express any of the tested V(â) regions. Clonality was further confirmed by PCR with the detection of clonal TCR beta and TCR gamma gene rearrangements. Six months later, she presented with persistent lower back pain and diagnosed with IgG kappa multiple myeloma. CD4/CD8 double-positive T-large granular leukemia is the first case reported in the literature. This rare phenotype is either underreported or a truly rare clinical entity. More studies are warranted to characterize the pathogenesis and clinical characteristics of this group of patients and to further assess the relationship between multiple myeloma and T-LGLL as a cause-and-effect relationship or simply related to the time at which diagnosis has been made.


Sign in / Sign up

Export Citation Format

Share Document