JAML promotes CD8 and γδ T cell antitumor immunity and is a novel target for cancer immunotherapy

2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Joseph M. McGraw ◽  
Flavian Thelen ◽  
Eric N. Hampton ◽  
Nelson E. Bruno ◽  
Travis S. Young ◽  
...  

T cells are critical mediators of antitumor immunity and a major target for cancer immunotherapy. Antibody blockade of inhibitory receptors such as PD-1 can partially restore the activity of tumor-infiltrating lymphocytes (TILs). However, the activation signals required to promote TIL responses are less well characterized. Here we show that the antitumor activity of CD8 and γδ TIL is supported by interactions between junctional adhesion molecule–like protein (JAML) on T cells and its ligand coxsackie and adenovirus receptor (CXADR) within tumor tissue. Loss of JAML through knockout in mice resulted in accelerated tumor growth that was associated with an impaired γδ TIL response and increased CD8 TIL dysfunction. In mouse tumor models, therapeutic treatment with an agonistic anti-JAML antibody inhibited tumor growth, improved γδ TIL activation, decreased markers of CD8 TIL dysfunction, and significantly improved response to anti–PD-1 checkpoint blockade. Thus, JAML represents a novel therapeutic target to enhance both CD8 and γδ TIL immunity.

2006 ◽  
Vol 105 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Abdeljabar El Andaloussi ◽  
Yu Han ◽  
Maciej S. Lesniak

Object Regulatory CD4+CD25+ T cells have been shown to play an important role in the regulation of the immune response. Whereas the presence of these cells has been associated with immune suppression, the lack of regulatory T (Treg) cells has been shown to induce autoimmunity. The purpose of this study was to define the role of Treg cells in tumors of the central nervous system (CNS). Methods The authors implanted syngeneic GL261 tumor cells in the brains or flanks of C57BL/6 mice. The resulting tumors were later removed at specific time points, and the presence of tumor-infiltrating lymphocytes was analyzed by performing flow cytometry for the presence of Treg cells. In a separate experiment, mice with GL261 tumors were treated with injections of anti-CD25 monoclonal antibody (mAb) to determine whether depletion of Treg cells may have an impact on the length of survival in mice with brain tumors. Tumor-infiltrating lymphocytes isolated from mice with GL261 tumors were found to have a significant increase in the presence of Treg cells compared with control lymphocytes (p < 0.05). Moreover, Treg cells isolated in murine brain tumors expressed FoxP3, CTLA-4, and CD62L. Mice treated with anti-CD25 mAb lived significantly longer than tumor-bearing control animals (p < 0.05). An analysis of brains in surviving animals showed a depletion of CD4+CD25+ T cells. Conclusions The results of this study indicate that CD4+CD25+ Treg cells play an important role in suppressing the immune response to CNS tumors. These Treg cells may therefore represent a potentially novel target for immunotherapy of malignant gliomas.


2021 ◽  
Vol 7 (3) ◽  
pp. eaax3160
Author(s):  
Gihoon You ◽  
Yangsoon Lee ◽  
Yeon-Woo Kang ◽  
Han Wook Park ◽  
Kyeongsu Park ◽  
...  

Cancer immunotherapy with 4-1BB agonists has limited further clinical development because of dose-limiting toxicity. Here, we developed a bispecific antibody (bsAb; B7-H3×4-1BB), targeting human B7-H3 (hB7-H3) and mouse or human 4-1BB, to restrict the 4-1BB stimulation in tumors. B7-H3×m4-1BB elicited a 4-1BB–dependent antitumor response in hB7-H3–overexpressing tumor models without systemic toxicity. BsAb primarily targets CD8 T cells in the tumor and increases their proliferation and cytokine production. Among the CD8 T cell population in the tumor, 4-1BB is solely expressed on PD-1+Tim-3+ “terminally differentiated” subset, and bsAb potentiates these cells for eliminating the tumor. Furthermore, the combination of bsAb and PD-1 blockade synergistically inhibits tumor growth accompanied by further increasing terminally differentiated CD8 T cells. B7-H3×h4-1BB also shows antitumor activity in h4-1BB–expressing mice. Our data suggest that B7-H3×4-1BB is an effective and safe therapeutic agent against B7-H3–positive cancers as monotherapy and combination therapy with PD-1 blockade.


2020 ◽  
Author(s):  
Genshen Zhong ◽  
Ying Wang ◽  
Jiaojiao Zhang ◽  
Yichun Wang ◽  
Yuan Li ◽  
...  

AbstractInduction of CD8+ T cell activity is a promising strategy in the cancer immunotherapy. In this study, we identified ATP synthase inhibitory factor 1 (ATPIF1) as a potential target in the induction of CD8+ T cell immunity against tumor. Inactivation of ATPIF1 gene in mice promoted the antitumor activity of CD8+ T cells leading to suppression of tumor growth of B16 melanoma and Lewis lung cancer. The phenotype was abolished by deletion of CD8+ T cells in the ATPIF1-KO mice. The tumor infiltrating CD8+ T cells exhibited strong activities in the proliferation, effector and memory as revealed by the single cell RNA sequencing results of CD45+ tumor infiltrating lymphocytes (TILs) isolated from the tumors. The CD8+ T cells expressed more antitumor makers in the tumor microenvironment and in coculture with the tumor cells. The cells had a higher level of glycolysis after the T cell receptor-mediated activation as revealed by the targeted metabolomics assay. The cells exhibited an extra activity of oxidative phosphorylation before the activation as indicated by the oxygen consumption rate. The cells gained capacities in the proliferation, apoptosis resistance and mitophagy in the glucose-limiting environment. These data suggest that inhibition of ATPIF1 activity by gene inactivation rewired the energy metabolism of CD8+ T cells to enhance their immune activities to the tumors. ATPIF1 is a potential molecular target in the induction of antitumor immunity through metabolic reprogramming of CD8+ T cells for the cancer immunotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A264-A264
Author(s):  
Shanshan Qi ◽  
Hongjuan Zhang ◽  
Ruilin Sun ◽  
Annie An ◽  
Henry Li ◽  
...  

BackgroundToll-like receptors (TLRs) serve critical roles in mediating innate immune responses against many pathogens. However, they may also bind to endogenous ligands and lead to the pathogenesis of autoimmunity. Although TLR8 belongs to the same TLR family as TLR7, its role in inflammation and tumor progression is not yet fully understood due to the lack of suitable animal models. In humans, both TLR7 and TLR8 recognize single-stranded self-RNA, viral RNA, and synthetic small molecule agonists.1, 2 However, mouse Tlr8 is non-functional due to the absence of 5 amino acids necessary for RNA recognition. In order to create a mouse model with functional TLR8, we replaced exon 3 of mouse Tlr8 with human TLR8, therefore developing a hTLR8 knock-in (KI) model. Both heterozygous and homozygous hTLR8 KI mice are viable with inflammatory phenotypes, i.e. enlarged spleens and livers, and significantly higher IL-12 p40 levels under TLR8 agonist treatment. In this study, we evaluated the potential use of hTLR8 mice for cancer immunotherapy studies.MethodshTLR8 mice, together with naïve C57BL/6 mice, were inoculated with MC38 syngeneic tumor cells. Tumor bearing mice were grouped at a mean tumor volume of approximately 100 mm3 for treatment with PBS or 10 mg/kg anti-PD-1 (RMP1-14) antibody. At the efficacy endpoint, spleens and tumors were collected for flow cytometry profiling.ResultsAnti-PD-1 treatment of MC38 tumors in naïve C57BL/6 led to moderate tumor growth inhibition (TGI = 54%). Interestingly, anti-PD-1 treatment showed improved efficacy in hTLR8 mice (TGI = 79%), including 2/10 tumors with complete tumor regression. In comparison, non-treated MC38 tumor growth rate was slower in hTLR8 mice than in naïve mice. Anti-PD-1 treated hTLR8 mice also had significantly increased IFN-γ and TNF-a positive CD4+ T cells in the spleen, along with higher numbers of differentiated effector T cells. In addition, hTLR8 mice have activated dendritic cells and macrophages, acting as critical steps in initiation of the inflammatory process, with higher levels of pro-inflammatory cytokines, such as IL-6, IFN-γ, TNF-a, and IL-1β, which may promote Th1 priming and differentiation of T cells into IFN-γ or TNF-a producing cells.ConclusionshTLR8 mice offer a great tool to model cancer immunotherapy in an inflammatory/autoimmunity prone background. Moreover, hTLR8 mice can be effectively used to shift a ‘cold’ tumor phenotype to ‘hot’ tumors in a syngeneic setting.Ethics ApprovalAnimal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).ReferencesKugelberg E. Making mice more human the TLR8 way. Nat Rev Immunol 2014;14:6.Guiducci C, Gong M, Cepika A-M, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 2013;210:2903–2919.


Author(s):  
H. Kuroda ◽  
T. Jamiyan ◽  
R. Yamaguchi ◽  
A. Kakumoto ◽  
A. Abe ◽  
...  

Abstract Purpose Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. Methods We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. Results TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. Conclusions Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.


2006 ◽  
Vol 119 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Sine Reker Hadrup ◽  
Otto Brændstrup ◽  
Grete Krag Jacobsen ◽  
Svend Mortensen ◽  
Lars Østergaard Pedersen ◽  
...  

2021 ◽  
Author(s):  
Guru Prasad Sharma ◽  
Ramoji Kosuru ◽  
Sribalaji Lakshmikanthan ◽  
Shikan Zheng ◽  
Yao Chen ◽  
...  

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor (VEGF) modulates tumor EC response to exclude T cells are not well understood. The goal was to determine the role of EC Rap1B, a small GTPase that positively regulates VEGFangiogenesis during development, in tumor growth in vivo. Using mouse models of Rap1B deficiency, Rap1B+/- and EC-specific Rap1B KO (Rap1BiΔEC) we demonstrate that EC Rap1B restricts tumor growth and angiogenesis. More importantly, EC-specific Rap1B deletion leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T cells. We find that tumor growth, albeit not angiogenesis, is restored in Rap1BiΔEC mice by depleting CD8+ T cells. Mechanistically, global transcriptome analysis indicated upregulation of the tumor cytokine, TNF-α, -induced signaling and NFκB transcriptional activity in Rap1B-deficient ECs. Functionally, EC Rap1B deletion led to upregulation of NFκB activity and enhanced Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was upregulated also in tumor ECs from Rap1BiΔEC mice, vs. controls. Significantly, deletion of Rap1B abrogated VEGF immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-dependent desensitization of EC to pro-inflammatory stimuli. Significantly, they identify EC Rap1 as a potential novel vascular target in cancer immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Danian Dai ◽  
Lili Liu ◽  
He Huang ◽  
Shangqiu Chen ◽  
Bo Chen ◽  
...  

BackgroundTumor-infiltrating lymphocytes (TILs) have important roles in predicting tumor therapeutic responses and progression, however, the method of evaluating TILs is complicated. We attempted to explore the association of TILs with clinicopathological characteristics and blood indicators, and to develop nomograms to predict the density of TILs in patients with high-grade serous ovarian cancer (HGSOC).MethodsThe clinical profiles of 197 consecutive postoperative HGSOC patients were retrospectively analyzed. Tumor tissues and matched normal fallopian tubes were immunostained for CD3+, CD8+, and CD4+ T cells on corresponding tissue microarrays and the numbers of TILs were counted using the NIH ImageJ software. The patients were classified into low- or high-density groups for each marker (CD3, CD4, CD8). The associations of the investigated TILs to clinicopathological characteristics and blood indicators were assessed and the related predictors for densities of TILs were used to develop nomograms; which were then further evaluated using the C-index, receiver operating characteristic (ROC) curves and calibration plots.ResultsMenopausal status, estrogen receptor (ER), Ki-67 index, white blood cell (WBC), platelets (PLT), lactate dehydrogenase (LDH), and carbohydrate antigen 153 (CA153) had significant association with densities of tumor-infiltrating CD3+, CD8+, or CD4+ T cells. The calibration curves of the CD3+ (C-index = 0.748), CD8+ (C-index = 0.683) and CD4+ TILs nomogram (C-index = 0.759) demonstrated excellent agreement between predictions and actual observations. ROC curves of internal validation indicated good discrimination for the CD8+ TILs nomogram [area under the curve (AUC) = 0.659, 95% CI 0.582–0.736] and encouraging performance for the CD3+ (AUC= 0.708, 95% CI 0.636–0.781) and CD4+ TILs nomogram (AUC = 0.730, 95% CI 0.659–0.801).ConclusionMenopausal status, ER, Ki-67 index, WBC, PLT, LDH, and CA153 could reflect the densities of T cells in the tumor microenvironment. Novel nomograms are conducive to monitor the immune status of patients with HGSOC and help doctors to formulate the appropriate treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document